Approximations of the Reproducing Kernel Hilbert Space (RKHS) Embedding Method over Manifolds

被引:0
|
作者
Guo, Jia [1 ]
Paruchuri, Sai Tej [1 ]
Kurdila, Andrew J. [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24060 USA
来源
2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2020年
关键词
INTERPOLATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The reproducing kernel Hilbert space (RKHS) embedding method is a recently introduced estimation approach that seeks to identify the unknown or uncertain function in the governing equations of a nonlinear set of ordinary differential equations (ODEs). While the original state estimate evolves in Euclidean space, the function estimate is constructed in an infinite dimensional RKHS and must be approximated in practice. When a finite dimensional approximation is constructed using a basis defined in terms of shifted kernel functions centered at the observations along a trajectory, the RKHS embedding method can be understood as a data-driven approach. This paper derives sufficient conditions that ensure that approximations of the unknown function converge in a Sobolev norm over a submanifold that supports the dynamics. Moreover, the rate of convergence for the finite dimensional approximations is derived in terms of the fill distance of the samples in the embedded manifold. A numerical simulation of an example problem is carried out to illustrate the qualitative nature of convergence results derived in the paper.
引用
收藏
页码:1596 / 1601
页数:6
相关论文
共 50 条
  • [41] Local Subspace Classifier in Reproducing Kernel Hilbert Space
    Zou, DF
    ADVANCES IN MULTIMODAL INTERFACES - ICMI 2000, PROCEEDINGS, 2000, 1948 : 434 - 441
  • [42] Ensemble forecasts in reproducing kernel Hilbert space family
    Dufee, Benjamin
    Hug, Berenger
    Memin, Etienne
    Tissot, Gilles
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 459
  • [43] Generalized Mahalanobis depth in the reproducing kernel Hilbert space
    Hu, Yonggang
    Wang, Yong
    Wu, Yi
    Li, Qiang
    Hou, Chenping
    STATISTICAL PAPERS, 2011, 52 (03) : 511 - 522
  • [44] A Reproducing Kernel Hilbert Space Framework for Functional Classification
    Sang, Peijun
    Kashlak, Adam B.
    Kong, Linglong
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 1000 - 1008
  • [45] Hyperellipsoidal Statistical Classifications in a Reproducing Kernel Hilbert Space
    Liang, Xun
    Ni, Zhihao
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 968 - 975
  • [46] A reproducing kernel Hilbert space approach for speech enhancement
    Gauci, Oliver
    Debono, Carl J.
    Micallef, Paul
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 831 - 835
  • [47] Modelling Policies in MDPs in Reproducing Kernel Hilbert Space
    Lever, Guy
    Stafford, Ronnie
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 590 - 598
  • [48] THE REPRODUCING KERNEL HILBERT SPACE BASED ON WAVELET TRANSFORM
    Deng, Cai-Xia
    Li, Shuai
    Fu, Zuo-Xian
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 370 - 374
  • [49] Sampling analysis in the complex reproducing kernel Hilbert space
    Li, Bing-Zhao
    Ji, Qing-Hua
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2015, 26 : 109 - 120
  • [50] Step size adaptation in reproducing kernel Hilbert space
    Vishwanathan, S. V. N.
    Schraudolph, Nicol N.
    Smola, Alex J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1107 - 1133