GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES

被引:14
|
作者
Souris, Nikolaos Panagiotis [1 ]
机构
[1] Univ Patras, Dept Math, Univ Campus, Rion 26504, Greece
关键词
D O I
10.1007/s00031-017-9464-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A geodesic orbit manifold (GO manifold) is a Riemannian manifold (M, g) with the property that any geodesic in M is an orbit of a one-parameter subgroup of a group G of isometries of (M, g). The metric g is then called a G-GO metric in M. For an arbitrary compact homogeneous manifold M = G/H, we simplify the general problem of determining the G-GO metrics in M. In particular, if the isotropy representation of H induces equivalent irreducible submodules in the tangent space of M, we obtain algebraic conditions, under which, any G-GO metric in M admits a reduced form. As an application we determine the U(n)-GO metrics in the complex Stiefel manifolds VkCn.
引用
收藏
页码:1149 / 1165
页数:17
相关论文
共 50 条
  • [1] GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES
    NIKOLAOS PANAGIOTIS SOURIS
    [J]. Transformation Groups, 2018, 23 : 1149 - 1165
  • [2] Geodesic orbit metrics on homogeneous spaces constructed by strongly isotropy irreducible spaces
    Chen, Huibin
    Chen, Zhiqi
    Zhu, Fuhai
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) : 2313 - 2326
  • [3] Geodesic orbit metrics on homogeneous spaces constructed by strongly isotropy irreducible spaces
    Huibin Chen
    Zhiqi Chen
    Fuhai Zhu
    [J]. Science China Mathematics, 2021, 64 : 2313 - 2326
  • [4] Geodesic orbit metrics on homogeneous spaces constructed by strongly isotropy irreducible spaces
    Huibin Chen
    Zhiqi Chen
    Fuhai Zhu
    [J]. Science China Mathematics, 2021, 64 (10) : 2313 - 2326
  • [5] Invariant geodesic orbit metrics on certain compact homogeneous spaces
    Chen, Huibin
    Chen, Zhiqi
    Yan, Zaili
    Zhu, Fuhai
    [J]. MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 651 - 668
  • [6] Invariant geodesic orbit metrics on certain compact homogeneous spaces
    Huibin Chen
    Zhiqi Chen
    Zaili Yan
    Fuhai Zhu
    [J]. manuscripta mathematica, 2023, 172 : 651 - 668
  • [7] Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds
    Arvanitoyeorgos, Andreas
    Souris, Nikolaos Panagiotis
    Statha, Marina
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 165
  • [8] Geodesic orbit Randers metrics in homogeneous bundles over generalized Stiefel manifolds
    Zhang, Shaoxiang
    Chen, Huibin
    [J]. FORUM MATHEMATICUM, 2024,
  • [9] Compact geodesic orbit spaces with a simple isotropy group
    Z. Chen
    Y. Nikolayevsky
    Yu Nikonorov
    [J]. Annals of Global Analysis and Geometry, 2023, 63
  • [10] Compact geodesic orbit spaces with a simple isotropy group
    Chen, Z.
    Nikolayevsky, Y.
    Nikonorov, Yu
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (01)