GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES

被引:14
|
作者
Souris, Nikolaos Panagiotis [1 ]
机构
[1] Univ Patras, Dept Math, Univ Campus, Rion 26504, Greece
关键词
D O I
10.1007/s00031-017-9464-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A geodesic orbit manifold (GO manifold) is a Riemannian manifold (M, g) with the property that any geodesic in M is an orbit of a one-parameter subgroup of a group G of isometries of (M, g). The metric g is then called a G-GO metric in M. For an arbitrary compact homogeneous manifold M = G/H, we simplify the general problem of determining the G-GO metrics in M. In particular, if the isotropy representation of H induces equivalent irreducible submodules in the tangent space of M, we obtain algebraic conditions, under which, any G-GO metric in M admits a reduced form. As an application we determine the U(n)-GO metrics in the complex Stiefel manifolds VkCn.
引用
收藏
页码:1149 / 1165
页数:17
相关论文
共 50 条
  • [31] Magnetic Geodesic Flows on Homogeneous Manifolds
    Magazev, A. A.
    RUSSIAN PHYSICS JOURNAL, 2014, 57 (03) : 312 - 320
  • [32] On homogeneous manifolds whose isotropy actions are polar
    Carlos Diaz-Ramos, Jose
    Dominguez-Vazquez, Miguel
    Kollross, Andreas
    MANUSCRIPTA MATHEMATICA, 2020, 161 (1-2) : 15 - 34
  • [33] On homogeneous manifolds whose isotropy actions are polar
    José Carlos Díaz-Ramos
    Miguel Domínguez-Vázquez
    Andreas Kollross
    manuscripta mathematica, 2020, 161 : 15 - 34
  • [34] Homogeneous Riemannian manifolds with only one homogeneous geodesic
    Kowalski, O
    Vlásek, Z
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 437 - 446
  • [35] Invariant (α, β)-metrics on homogeneous manifolds
    An, Huihui
    Deng, Shaoqiang
    MONATSHEFTE FUR MATHEMATIK, 2008, 154 (02): : 89 - 102
  • [36] A NOTE ON GEODESIC AND ALMOST GEODESIC MAPPINGS OF HOMOGENEOUS RIEMANNIAN MANIFOLDS
    Formella, Stanislaw
    OPUSCULA MATHEMATICA, 2005, 25 (02) : 181 - 187
  • [37] VARIATIONS OF METRICS ON HOMOGENEOUS MANIFOLDS
    LUKESH, GW
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (04) : 655 - 667
  • [38] Invariant (α, β)-metrics on homogeneous manifolds
    Huihui An
    Shaoqiang Deng
    Monatshefte für Mathematik, 2008, 154
  • [39] Compact simple Lie groups admitting left-invariant Einstein metrics that are not geodesic orbit
    Chen, Huibin
    Chen, Zhiqi
    Deng, Shaoqiang
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (01) : 81 - 84
  • [40] GEODESIC ORBIT FINSLER METRICS ON EUCLIDEAN SPACES
    Xu, Ming
    Deng, Shaoqiang
    Yan, Zaili
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (02): : 283 - 303