GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES

被引:14
|
作者
Souris, Nikolaos Panagiotis [1 ]
机构
[1] Univ Patras, Dept Math, Univ Campus, Rion 26504, Greece
关键词
D O I
10.1007/s00031-017-9464-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A geodesic orbit manifold (GO manifold) is a Riemannian manifold (M, g) with the property that any geodesic in M is an orbit of a one-parameter subgroup of a group G of isometries of (M, g). The metric g is then called a G-GO metric in M. For an arbitrary compact homogeneous manifold M = G/H, we simplify the general problem of determining the G-GO metrics in M. In particular, if the isotropy representation of H induces equivalent irreducible submodules in the tangent space of M, we obtain algebraic conditions, under which, any G-GO metric in M admits a reduced form. As an application we determine the U(n)-GO metrics in the complex Stiefel manifolds VkCn.
引用
下载
收藏
页码:1149 / 1165
页数:17
相关论文
共 50 条
  • [21] Geodesic orbit Finsler (α, β) metrics
    Dusek, Zdenek
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (01)
  • [22] Geodesic Graphs for Geodesic Orbit Finsler (α, β) Metrics on Spheres
    Arias-Marco, Teresa
    Dusek, Zdenek
    VIETNAM JOURNAL OF MATHEMATICS, 2024,
  • [23] On a class of geodesic orbit spaces with abelian isotropy subgroup
    Nikolaos Panagiotis Souris
    manuscripta mathematica, 2021, 166 : 101 - 129
  • [24] On a class of geodesic orbit spaces with abelian isotropy subgroup
    Souris, Nikolaos Panagiotis
    MANUSCRIPTA MATHEMATICA, 2021, 166 (1-2) : 101 - 129
  • [25] On the Geodesic Orbit Property for Lorentz Manifolds
    Zhiqi Chen
    Joseph A. Wolf
    Shaoxiang Zhang
    The Journal of Geometric Analysis, 2022, 32
  • [26] On the Geodesic Orbit Property for Lorentz Manifolds
    Chen, Zhiqi
    Wolf, Joseph A.
    Zhang, Shaoxiang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [27] Geodesic orbit Randers metrics on spheres
    Zhang, Shaoxiang
    Yan, Zaili
    ADVANCES IN GEOMETRY, 2021, 21 (02) : 273 - 280
  • [28] HOMOGENEOUS RIEMANNIAN MANIFOLDS WITH A FIXED ISOTROPY REPRESENTATION
    CATTANI, EH
    MANN, LN
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (03) : 535 - 552
  • [29] Geodesic complexity of homogeneous Riemannian manifolds
    Mescher, Stephan
    Stegemeyer, Maximilian
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (05): : 2221 - 2270
  • [30] Magnetic Geodesic Flows on Homogeneous Manifolds
    A. A. Magazev
    Russian Physics Journal, 2014, 57 : 312 - 320