Invariant geodesic orbit metrics on certain compact homogeneous spaces

被引:0
|
作者
Chen, Huibin [1 ]
Chen, Zhiqi [2 ]
Yan, Zaili [3 ]
Zhu, Fuhai [4 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Peoples R China
[2] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510520, Peoples R China
[3] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[4] Nanjing Univ, Dept Math, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
RIEMANNIAN-MANIFOLDS;
D O I
10.1007/s00229-022-01416-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study G-g.o. metrics on a class of compact homogeneous spaces G/H constructed from homogeneous spaces G/(H x K) with K a compact Lie subgroup of G. G/H can be viewed as a total space over G/(H x K) with a fiber K. We establish the relation between G-g.o. metrics on G/H and G-g.o. metrics on G/(H x K). Furthermore, we provide a method to determine G-g.o. metrics on G/H based on the classification of G-g.o. metrics on G/(H x K). We also consider G x H-invariant g.o. metrics on compact simple Lie groups arising from the derived homogeneous spaces G/H. As an application, based on the classification of compact strongly isotropy irreducible spaces G/(H x K), we give a complete classification of G-g.o. metrics on derived homogeneous spaces G/H and prove that all G x H-invariant g.o. metrics on compact simple Lie groups G arising from G/H are naturally reductive with respect to G x H.
引用
收藏
页码:651 / 668
页数:18
相关论文
共 50 条
  • [1] Invariant geodesic orbit metrics on certain compact homogeneous spaces
    Huibin Chen
    Zhiqi Chen
    Zaili Yan
    Fuhai Zhu
    [J]. manuscripta mathematica, 2023, 172 : 651 - 668
  • [2] Classification of invariant Einstein metrics on certain compact homogeneous spaces
    Zaili Yan
    Huibin Chen
    Shaoqiang Deng
    [J]. Science China Mathematics, 2020, 63 (04) : 755 - 776
  • [3] Classification of invariant Einstein metrics on certain compact homogeneous spaces
    Zaili Yan
    Huibin Chen
    Shaoqiang Deng
    [J]. Science China Mathematics, 2020, 63 : 755 - 776
  • [4] Classification of invariant Einstein metrics on certain compact homogeneous spaces
    Yan, Zaili
    Chen, Huibin
    Deng, Shaoqiang
    [J]. SCIENCE CHINA-MATHEMATICS, 2020, 63 (04) : 755 - 776
  • [5] Geodesic orbit metrics on homogeneous spaces constructed by strongly isotropy irreducible spaces
    Chen, Huibin
    Chen, Zhiqi
    Zhu, Fuhai
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) : 2313 - 2326
  • [6] Geodesic orbit metrics on homogeneous spaces constructed by strongly isotropy irreducible spaces
    Huibin Chen
    Zhiqi Chen
    Fuhai Zhu
    [J]. Science China Mathematics, 2021, 64 : 2313 - 2326
  • [7] Geodesic orbit metrics on homogeneous spaces constructed by strongly isotropy irreducible spaces
    Huibin Chen
    Zhiqi Chen
    Fuhai Zhu
    [J]. Science China Mathematics, 2021, 64 (10) : 2313 - 2326
  • [8] GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES
    NIKOLAOS PANAGIOTIS SOURIS
    [J]. Transformation Groups, 2018, 23 : 1149 - 1165
  • [9] GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES
    Souris, Nikolaos Panagiotis
    [J]. TRANSFORMATION GROUPS, 2018, 23 (04) : 1149 - 1165
  • [10] GEODESIC VECTOR FIELDS OF INVARIANT (alpha, beta)-METRICS ON HOMOGENEOUS SPACES
    Parhizkar, M.
    Moghaddam, H. R. Salimi
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (02): : 39 - 44