Geodesic orbit metrics on homogeneous spaces constructed by strongly isotropy irreducible spaces

被引:0
|
作者
Huibin Chen
Zhiqi Chen
Fuhai Zhu
机构
[1] Nanjing Normal University,School of Mathematical Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
[3] Nanjing University,Department of Mathematics
来源
Science China Mathematics | 2021年 / 64卷
关键词
geodesic orbit metric; homogeneous Riemannian manifold; principal isotropy subgroup; geodesic graph; 53C25; 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we focus on homogeneous spaces which are constructed from two strongly isotropy irreducible spaces, and prove that any geodesic orbit metric on these spaces is naturally reductive.
引用
收藏
页码:2313 / 2326
页数:13
相关论文
共 50 条
  • [1] Geodesic orbit metrics on homogeneous spaces constructed by strongly isotropy irreducible spaces
    Chen, Huibin
    Chen, Zhiqi
    Zhu, Fuhai
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) : 2313 - 2326
  • [2] Geodesic orbit metrics on homogeneous spaces constructed by strongly isotropy irreducible spaces
    Huibin Chen
    Zhiqi Chen
    Fuhai Zhu
    Science China(Mathematics), 2021, 64 (10) : 2313 - 2326
  • [3] SYMMETRICAL SPACES AND STRONGLY ISOTROPY IRREDUCIBLE SPACES
    WANG, M
    ZILLER, W
    MATHEMATISCHE ANNALEN, 1993, 296 (02) : 285 - 326
  • [4] Invariant geodesic orbit metrics on certain compact homogeneous spaces
    Chen, Huibin
    Chen, Zhiqi
    Yan, Zaili
    Zhu, Fuhai
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 651 - 668
  • [5] Invariant geodesic orbit metrics on certain compact homogeneous spaces
    Huibin Chen
    Zhiqi Chen
    Zaili Yan
    Fuhai Zhu
    manuscripta mathematica, 2023, 172 : 651 - 668
  • [6] GEOMETRY AND STRUCTURE OF ISOTROPY IRREDUCIBLE HOMOGENEOUS SPACES
    WOLF, JA
    ACTA MATHEMATICA UPPSALA, 1968, 120 (1-2): : 59 - &
  • [7] On a class of geodesic orbit spaces with abelian isotropy subgroup
    Nikolaos Panagiotis Souris
    manuscripta mathematica, 2021, 166 : 101 - 129
  • [8] Compact geodesic orbit spaces with a simple isotropy group
    Z. Chen
    Y. Nikolayevsky
    Yu Nikonorov
    Annals of Global Analysis and Geometry, 2023, 63
  • [9] Compact geodesic orbit spaces with a simple isotropy group
    Chen, Z.
    Nikolayevsky, Y.
    Nikonorov, Yu
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (01)
  • [10] On a class of geodesic orbit spaces with abelian isotropy subgroup
    Souris, Nikolaos Panagiotis
    MANUSCRIPTA MATHEMATICA, 2021, 166 (1-2) : 101 - 129