Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds

被引:6
|
作者
Arvanitoyeorgos, Andreas [1 ,2 ]
Souris, Nikolaos Panagiotis [1 ]
Statha, Marina [1 ,3 ]
机构
[1] Univ Patras, Dept Math, GR-26500 Rion, Greece
[2] Hellen Open Univ, Aristotelous 18, GR-26335 Patras, Greece
[3] Univ Thessaly, Dept Math, GR-35100 Lamia, Greece
关键词
Homogeneous geodesic; Geodesic vector; Geodesic orbit space; Isotropy representation; Quaternionic flag manifold; Quaternionic Stiefel manifold; RIEMANNIAN G.O. SPACES;
D O I
10.1016/j.geomphys.2021.104223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces (M = G/H, g) whose geodesics are orbits of one-parameter subgroups of G. The corresponding metric g is called a geodesic orbit metric. We study the geodesic orbit spaces of the form (Sp(n)/Sp(n(1)) x ... x Sp(n(s)), g), with O < n(1) + ... +n(s) <= n. Such spaces include spheres, quaternionic Stiefel manifolds, Grassmann manifolds and quaternionic flag manifolds. The present work is a contribution to the study of g.o. spaces (G/H, g) with H semisimple. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Geodesic orbit metrics in a class of homogeneous bundles over real and complex Stiefel manifolds
    Andreas Arvanitoyeorgos
    Nikolaos Panagiotis Souris
    Marina Statha
    Geometriae Dedicata, 2021, 215 : 31 - 50
  • [2] Geodesic orbit metrics in a class of homogeneous bundles over real and complex Stiefel manifolds
    Arvanitoyeorgos, Andreas
    Souris, Nikolaos Panagiotis
    Statha, Marina
    GEOMETRIAE DEDICATA, 2021, 215 (01) : 31 - 50
  • [3] Geodesic orbit Randers metrics in homogeneous bundles over generalized Stiefel manifolds
    Zhang, Shaoxiang
    Chen, Huibin
    FORUM MATHEMATICUM, 2025, 37 (03) : 793 - 809
  • [4] New homogeneous Einstein metrics on quaternionic Stiefel manifolds
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    ADVANCES IN GEOMETRY, 2018, 18 (04) : 509 - 524
  • [5] GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES
    NIKOLAOS PANAGIOTIS SOURIS
    Transformation Groups, 2018, 23 : 1149 - 1165
  • [6] GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES
    Souris, Nikolaos Panagiotis
    TRANSFORMATION GROUPS, 2018, 23 (04) : 1149 - 1165
  • [7] New homogeneous Einstein metrics on Stiefel manifolds
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 2 - 18
  • [8] A METRIC PROOF THAT δ-HOMOGENEOUS MANIFOLDS ARE GEODESIC ORBIT MANIFOLDS
    Arvanitoyeorgos, Andreas
    Souris, Nikolaos Panagiotis
    COLLOQUIUM MATHEMATICUM, 2021, 165 (02) : 219 - 224
  • [9] Characteristic rank of vector bundles over Stiefel manifolds
    Július Korbaš
    Aniruddha C. Naolekar
    Ajay Singh Thakur
    Archiv der Mathematik, 2012, 99 : 577 - 581
  • [10] Characteristic rank of vector bundles over Stiefel manifolds
    Korbas, Julius
    Naolekar, Aniruddha C.
    Thakur, Ajay Singh
    ARCHIV DER MATHEMATIK, 2012, 99 (06) : 577 - 581