Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds

被引:6
|
作者
Arvanitoyeorgos, Andreas [1 ,2 ]
Souris, Nikolaos Panagiotis [1 ]
Statha, Marina [1 ,3 ]
机构
[1] Univ Patras, Dept Math, GR-26500 Rion, Greece
[2] Hellen Open Univ, Aristotelous 18, GR-26335 Patras, Greece
[3] Univ Thessaly, Dept Math, GR-35100 Lamia, Greece
关键词
Homogeneous geodesic; Geodesic vector; Geodesic orbit space; Isotropy representation; Quaternionic flag manifold; Quaternionic Stiefel manifold; RIEMANNIAN G.O. SPACES;
D O I
10.1016/j.geomphys.2021.104223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces (M = G/H, g) whose geodesics are orbits of one-parameter subgroups of G. The corresponding metric g is called a geodesic orbit metric. We study the geodesic orbit spaces of the form (Sp(n)/Sp(n(1)) x ... x Sp(n(s)), g), with O < n(1) + ... +n(s) <= n. Such spaces include spheres, quaternionic Stiefel manifolds, Grassmann manifolds and quaternionic flag manifolds. The present work is a contribution to the study of g.o. spaces (G/H, g) with H semisimple. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条