Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds

被引:9
|
作者
Chen, Huibin [1 ,2 ]
Chen, Zhiqi [1 ,2 ]
Wolf, Joseph A. [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
HOMOGENEOUS GEODESICS; EINSTEIN-METRICS; SPACES;
D O I
10.1016/j.crma.2018.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate left-invariant geodesic orbit metrics on connected simple Lie groups, where the metrics are formed by the structures of flag manifolds. We prove that all these left-invariant geodesic orbit metrics on simple Lie groups are naturally reductive. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:846 / 851
页数:6
相关论文
共 50 条
  • [1] Compact simple Lie groups admitting left-invariant Einstein metrics that are not geodesic orbit
    Chen, Huibin
    Chen, Zhiqi
    Deng, Shaoqiang
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (01) : 81 - 84
  • [2] Spinor structures on flag manifolds of compact simple Lie groups
    Owczarek, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (21): : 3979 - 3991
  • [3] Einstein Lie groups, geodesic orbit manifolds and regular Lie subgroups
    Souris, Nikolaos Panagiotis
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2025, 27 (01)
  • [4] On Reidemeister torsion of flag manifolds of compact semisimple Lie groups
    Ozel, Cenap
    Basbaydar, Habib
    Sozen, Yasar
    Yilmaz, Erol
    Lee, Jung Rye
    Park, Choonkil
    AIMS MATHEMATICS, 2020, 5 (06): : 7562 - 7581
  • [5] Geodesic orbit spaces of compact Lie groups of rank two
    Nikolaos Panagiotis Souris
    Geometriae Dedicata, 2022, 216
  • [6] GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES
    NIKOLAOS PANAGIOTIS SOURIS
    Transformation Groups, 2018, 23 : 1149 - 1165
  • [7] Geodesic orbit spaces of compact Lie groups of rank two
    Souris, Nikolaos Panagiotis
    GEOMETRIAE DEDICATA, 2022, 216 (01)
  • [8] EINSTEIN METRICS ON COMPACT SIMPLE LIE GROUPS
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2024, 69 : 1 - 16
  • [9] GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES
    Souris, Nikolaos Panagiotis
    TRANSFORMATION GROUPS, 2018, 23 (04) : 1149 - 1165
  • [10] Geodesic orbit spaces in real flag manifolds
    Grajales, Brian
    Grama, Lino
    Negreiros, Caio J. C.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2020, 28 (08) : 1933 - 2003