Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds

被引:9
|
作者
Chen, Huibin [1 ,2 ]
Chen, Zhiqi [1 ,2 ]
Wolf, Joseph A. [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
HOMOGENEOUS GEODESICS; EINSTEIN-METRICS; SPACES;
D O I
10.1016/j.crma.2018.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate left-invariant geodesic orbit metrics on connected simple Lie groups, where the metrics are formed by the structures of flag manifolds. We prove that all these left-invariant geodesic orbit metrics on simple Lie groups are naturally reductive. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:846 / 851
页数:6
相关论文
共 50 条
  • [21] Invariant geodesic orbit metrics on certain compact homogeneous spaces
    Chen, Huibin
    Chen, Zhiqi
    Yan, Zaili
    Zhu, Fuhai
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 651 - 668
  • [22] Invariant geodesic orbit metrics on certain compact homogeneous spaces
    Huibin Chen
    Zhiqi Chen
    Zaili Yan
    Fuhai Zhu
    manuscripta mathematica, 2023, 172 : 651 - 668
  • [23] Ergodic Measures of Geodesic Flows on Compact Lie Groups
    Gang LIAO
    Wen Xiang SUN
    Acta Mathematica Sinica,English Series, 2013, (09) : 1781 - 1790
  • [24] Ergodic Measures of Geodesic Flows on Compact Lie Groups
    Gang LIAO
    Wen Xiang SUN
    ActaMathematicaSinica, 2013, 29 (09) : 1781 - 1790
  • [25] Ergodic measures of geodesic flows on compact Lie groups
    Gang Liao
    Wen Xiang Sun
    Acta Mathematica Sinica, English Series, 2013, 29 : 1781 - 1790
  • [26] Ergodic measures of geodesic flows on compact Lie groups
    Liao, Gang
    Sun, Wen Xiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (09) : 1781 - 1790
  • [27] Riemannian submersions from simple, compact Lie groups
    Kerin, Martin
    Shankar, Krishnan
    MUENSTER JOURNAL OF MATHEMATICS, 2012, 5 (01): : 25 - 40
  • [28] Compact geodesic orbit spaces with a simple isotropy group
    Chen, Z.
    Nikolayevsky, Y.
    Nikonorov, Yu
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (01)
  • [29] Compact geodesic orbit spaces with a simple isotropy group
    Z. Chen
    Y. Nikolayevsky
    Yu Nikonorov
    Annals of Global Analysis and Geometry, 2023, 63
  • [30] Hyperkahler metrics associated to compact Lie groups
    Dancer, A
    Swann, A
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 : 61 - 69