Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks

被引:8
|
作者
Ciylan, B. [1 ]
机构
[1] Gazi Univ, Dept Elect & Comp Educ, Fac Tech Educ, Ankara, Turkey
关键词
SEEBECK COEFFICIENT; TEST SYSTEM; MODEL; DESIGN;
D O I
10.5755/j01.eee.116.10.884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
B. Ciylan. Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks // Electronics and Electrical Engineering. - Kaunas: Technologija, 2011. - No. 10(116). - P. 63-66. Determination of instant dynamic output parameters of thermoelectric module which is worked in any system is very important. Despite of the new methods this process takes a lot of times. In this study, two artificial neural network (ANN) models are designed for the estimation of dynamic output parameters at any desired moment of the thermoelectric modules. MATLAB-ANN tools and an ANN simulator program are used for creating the models. Experimental dynamic output parameters data which obtained from eight different thermal load conditions were used for training the ANN Models. On the designed ANN models which were created to estimate instant dynamic output parameters of the thermoelectric module, the Levenberg-Marquardt (LM) learning algorithm has been used. The results obtained with these ANN models, compared with the experimental data and it was shown in graphs. III. 6, bibl. 20, tabl. 1 (in English; abstracts in English and Lithuanian).
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
  • [41] Estimation of the RiIG-Distribution Parameters Using the Artificial Neural Networks
    Mezache, Amar
    Chalabi, Izzeddine
    2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2013), 2013, : 291 - 296
  • [42] Estimating Soil Temperature With Artificial Neural Networks Using Meteorological Parameters
    Aslay, Fulya
    Ozen, Ustun
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2013, 16 (04): : 139 - 145
  • [43] Prediction of water quality parameters in a reservoir using artificial neural networks
    Vicente, H.
    Couto, C.
    Machado, J.
    Abelha, A.
    Neves, J.
    International Journal of Design and Nature and Ecodynamics, 2012, 7 (03): : 310 - 319
  • [44] ECoPANN: A Framework for Estimating Cosmological Parameters Using Artificial Neural Networks
    Wang, Guo-Jian
    Li, Si-Yao
    Xia, Jun-Qing
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 249 (02):
  • [45] Modelling Changes in the Parameters of Treated Sewage Using Artificial Neural Networks
    Skoczko, Iwona
    Struk-Sokolowska, Joanna
    Ofman, Piotr
    ROCZNIK OCHRONA SRODOWISKA, 2017, 19 : 633 - 650
  • [46] Damage detection in beams by using artificial neural networks and dynamical parameters
    Villalba, Jesus D.
    Gomez, Ivan D.
    Laier, Jose E.
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2012, (63): : 141 - 153
  • [47] Using of Artificial Neural Networks (ANN) for Aircraft Motion Parameters Identification
    Bondarets, Anatolij
    Kreerenko, Olga
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, PROCEEDINGS, 2009, 43 : 246 - 256
  • [48] Reconstruction of gait biomechanical parameters using cyclograms and artificial neural networks
    Caparelli T.B.
    Naves E.L.M.
    Research on Biomedical Engineering, 2017, 33 (03) : 229 - 236
  • [49] The Investigation of Electron-Optical Parameters Using Artificial Neural Networks
    Isik, A. H.
    ACTA PHYSICA POLONICA A, 2015, 127 (04) : 1317 - 1319
  • [50] Determination of lapping parameters for silicon wafer using an artificial neural network
    Savas Ozturk
    Erhan Kayabasi
    Erdal Celik
    Huseyin Kurt
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 260 - 270