Estimation of the RiIG-Distribution Parameters Using the Artificial Neural Networks

被引:0
|
作者
Mezache, Amar [1 ]
Chalabi, Izzeddine [2 ]
机构
[1] Univ Constantine 1, Lab Signaux & Syst Commun, Dept Elect, Constantine 25010, Algeria
[2] Univ Msila, Fac Technol, Dept Elect, Msila 28000, Algeria
关键词
K-DISTRIBUTION; CLUTTER; NOISE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to improve the estimation of the RiIG (Rician Inverse Gaussian) model parameters, the authors attempt to achieve the parameter estimates using the inverse function of the RiIG CDF (Cumulative Distributed Function) which the latter can not be obtained in a closed form. However, the ANN (Artificial Neural Network) technique is preferred which has the ability to approximate this nonlinear complexity. From recorded sea-clutter data, the regressions of the real CDF are used at the input layer of the ANN estimator. The weights of the network are optimized in real time by means of the genetic algorithm (GA) tool. The mean square error of estimates (MSE) criterion is considered to assess the estimation performance. For almost cases, the experimental results show that adopting the proposed scheme of the ANN estimator turns out the best parameter estimates and also allows a better matching of real CDF and real PDF (Probability density Function) than the standard IMLM (Iterative Maximum Likelihood Method) estimator.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 50 条
  • [1] Estimation of K distribution parameters using neural networks
    Wachowiak, MP
    Smolíková, R
    Zurada, JM
    Elmaghraby, AS
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (06) : 617 - 620
  • [2] Estimation of strength parameters of rock using artificial neural networks
    Sarkar, Kripamoy
    Tiwary, Avyaktanand
    Singh, T. N.
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2010, 69 (04) : 599 - 606
  • [3] Estimation of air pollution parameters using artificial neural networks
    Cigizoglu, HK
    Alp, K
    Kömürcü, M
    ADVANCES IN AIR POLLUTION MODELING FOR ENVIRONMENTAL SECURITY, 2005, 54 : 63 - 75
  • [4] Estimation of strength parameters of rock using artificial neural networks
    Kripamoy Sarkar
    Avyaktanand Tiwary
    T. N. Singh
    Bulletin of Engineering Geology and the Environment, 2010, 69 : 599 - 606
  • [5] Estimation of Coal's Sorption Parameters Using Artificial Neural Networks
    Skiba, Marta
    Mlynarczuk, Mariusz
    MATERIALS, 2020, 13 (23) : 1 - 11
  • [6] Decentralized Load Estimation for Distribution Systems Using Artificial Neural Networks
    Chen, Yan
    Fadda, Maria Grazia
    Benigni, Andrea
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (05) : 1333 - 1342
  • [7] ESTIMATION OF THE PARAMETERS OF THE K-DISTRIBUTION USING FUZZY NEURAL NETWORKS
    Mezache, A.
    Soltani, F.
    2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 277 - 282
  • [8] ARTIFICIAL NEURAL NETWORKS FOR ESTIMATION OF KINETIC ANALYTICAL PARAMETERS
    VENTURA, S
    SILVA, M
    PEREZBENDITO, D
    HERVAS, C
    ANALYTICAL CHEMISTRY, 1995, 67 (09) : 1521 - 1525
  • [9] Efficiency parameters estimation in gemstones cut design using artificial neural networks
    Mol, Adriano A.
    Martins-Filho, Luiz S.
    da Silva, Jose Demisio S.
    Rocha, Ronilson
    COMPUTATIONAL MATERIALS SCIENCE, 2007, 38 (04) : 727 - 736
  • [10] Quantifying uncertainties in the estimation of safety parameters by using bootstrapped artificial neural networks
    Secchi, Piercesare
    Zio, Enrico
    Di Maio, Francesco
    ANNALS OF NUCLEAR ENERGY, 2008, 35 (12) : 2338 - 2350