Estimation of the RiIG-Distribution Parameters Using the Artificial Neural Networks

被引:0
|
作者
Mezache, Amar [1 ]
Chalabi, Izzeddine [2 ]
机构
[1] Univ Constantine 1, Lab Signaux & Syst Commun, Dept Elect, Constantine 25010, Algeria
[2] Univ Msila, Fac Technol, Dept Elect, Msila 28000, Algeria
关键词
K-DISTRIBUTION; CLUTTER; NOISE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to improve the estimation of the RiIG (Rician Inverse Gaussian) model parameters, the authors attempt to achieve the parameter estimates using the inverse function of the RiIG CDF (Cumulative Distributed Function) which the latter can not be obtained in a closed form. However, the ANN (Artificial Neural Network) technique is preferred which has the ability to approximate this nonlinear complexity. From recorded sea-clutter data, the regressions of the real CDF are used at the input layer of the ANN estimator. The weights of the network are optimized in real time by means of the genetic algorithm (GA) tool. The mean square error of estimates (MSE) criterion is considered to assess the estimation performance. For almost cases, the experimental results show that adopting the proposed scheme of the ANN estimator turns out the best parameter estimates and also allows a better matching of real CDF and real PDF (Probability density Function) than the standard IMLM (Iterative Maximum Likelihood Method) estimator.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 50 条
  • [41] Estimation of research reactor core parameters using cascade feed forward artificial neural networks
    Hedayat, Afshin
    Davilu, Hadi
    Barfrosh, Ahmad Abdollahzadeh
    Sepanloo, Kamran
    PROGRESS IN NUCLEAR ENERGY, 2009, 51 (6-7) : 709 - 718
  • [42] Estimation of echocardiogram parameters with the aid of impedance cardiography and artificial neural networks
    Ghosh, Sudipta
    Chattopadhyay, Bhabani Prasad
    Roy, Ram Mohan
    Mukherjee, Jayanta
    Mahadevappa, Manjunatha
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 96 : 45 - 58
  • [43] Bad Data Detection and Handling in Distribution Grid State Estimation Using Artificial Neural Networks
    Cramer, Moritz
    Goergens, Philipp
    Schnettler, Armin
    2015 IEEE EINDHOVEN POWERTECH, 2015,
  • [44] Estimation of Stokes Parameters Using Deep Neural Networks
    Manuel Raygoza-Romero, Joan
    Hussein Lopez-Nava, Irvin
    Cesar Ramirez-Velez, Julio
    PATTERN RECOGNITION, MCPR 2023, 2023, 13902 : 159 - 168
  • [45] Estimation of wastewater process parameters using neural networks
    Hack, M
    Kohne, M
    WATER SCIENCE AND TECHNOLOGY, 1996, 33 (01) : 101 - 115
  • [46] Parameters Estimation of PV Models Using Artificial Neural Network
    Abdellatif, Hussein
    Hossain, Md Ismail
    Abido, Mohammad A.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (11) : 14947 - 14956
  • [47] Parameters Estimation of PV Models Using Artificial Neural Network
    Hussein Abdellatif
    Md Ismail Hossain
    Mohammad A. Abido
    Arabian Journal for Science and Engineering, 2022, 47 : 14947 - 14956
  • [48] Performance parameters estimation of MAC by using artificial neural network
    Atik, Kemal
    Aktas, Abdurrazzak
    Deniz, Emrah
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (07) : 5436 - 5442
  • [49] Water Distribution Networks Model Identification using Artificial Neural Networks
    Mosetlhe, Thapelo
    Hamam, Yskandar
    Du, Shengzhi
    Monacelli, Eric
    Alayli, Yasser
    2019 IEEE AFRICON, 2019,
  • [50] Sex and age estimation with corneal topography parameters by using machine learning algorithms and artificial neural networks
    Yilmaz, Nesibe
    Secgin, Yusuf
    Mercan, Kadir
    EGYPTIAN JOURNAL OF FORENSIC SCIENCES, 2024, 14 (01)