Estimation of the RiIG-Distribution Parameters Using the Artificial Neural Networks

被引:0
|
作者
Mezache, Amar [1 ]
Chalabi, Izzeddine [2 ]
机构
[1] Univ Constantine 1, Lab Signaux & Syst Commun, Dept Elect, Constantine 25010, Algeria
[2] Univ Msila, Fac Technol, Dept Elect, Msila 28000, Algeria
关键词
K-DISTRIBUTION; CLUTTER; NOISE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to improve the estimation of the RiIG (Rician Inverse Gaussian) model parameters, the authors attempt to achieve the parameter estimates using the inverse function of the RiIG CDF (Cumulative Distributed Function) which the latter can not be obtained in a closed form. However, the ANN (Artificial Neural Network) technique is preferred which has the ability to approximate this nonlinear complexity. From recorded sea-clutter data, the regressions of the real CDF are used at the input layer of the ANN estimator. The weights of the network are optimized in real time by means of the genetic algorithm (GA) tool. The mean square error of estimates (MSE) criterion is considered to assess the estimation performance. For almost cases, the experimental results show that adopting the proposed scheme of the ANN estimator turns out the best parameter estimates and also allows a better matching of real CDF and real PDF (Probability density Function) than the standard IMLM (Iterative Maximum Likelihood Method) estimator.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 50 条
  • [31] Probability density estimation using artificial neural networks
    Likas, A
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (02) : 167 - 175
  • [32] DIRECTION OF ARRIVAL ESTIMATION USING ARTIFICIAL NEURAL NETWORKS
    JHA, S
    DURRANI, T
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1192 - 1201
  • [33] Estimation of daily evaporation using artificial neural networks
    Doǧan, Emrah
    Işik, Sabahattin
    Sandalci, Mehmet
    Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2007, 18 (02): : 4119 - 4131
  • [34] Solar radiation estimation using artificial neural networks
    Dorvlo, ASS
    Jervase, JA
    Al-Lawati, A
    APPLIED ENERGY, 2002, 71 (04) : 307 - 319
  • [35] Estimation of daily evaporation using Artificial Neural Networks
    Dogan, Emrah
    Isik, Sabahattin
    Sandalci, Mehmet
    TEKNIK DERGI, 2007, 18 (02): : 4119 - 4131
  • [36] Wireless User Estimation Using Artificial Neural Networks
    Abinoja, Daniel
    Bedruz, Rhen Anjerome
    Jovellanos, Kevin Loo
    Bandala, Argel
    2015 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY,COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2015, : 475 - +
  • [37] Monthly Runoff Estimation Using Artificial Neural Networks
    Yazdani, M. R.
    Saghafian, B.
    Mahdian, M. H.
    Soltani, S.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2009, 11 (03): : 355 - 362
  • [38] Estimation of conditional quantiles using artificial neural networks
    Zhang, JT
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (06): : 569 - 574
  • [39] Practical inferential estimation using artificial neural networks
    Tham, MT
    Montague, GA
    Glassey, J
    Willis, MJ
    MEASUREMENT & CONTROL, 2002, 35 (01): : 5 - 9
  • [40] Estimation of adsorption isotherm and mass transfer parameters in protein chromatography using artificial neural networks
    Wang, Gang
    Briskot, Till
    Hahn, Tobias
    Baumann, Pascal
    Hubbuch, Juergen
    JOURNAL OF CHROMATOGRAPHY A, 2017, 1487 : 211 - 217