Practical inferential estimation using artificial neural networks

被引:3
|
作者
Tham, MT [1 ]
Montague, GA [1 ]
Glassey, J [1 ]
Willis, MJ [1 ]
机构
[1] Univ Newcastle, Dept Chem & Proc Engn, Newcastle, NSW 2308, Australia
来源
MEASUREMENT & CONTROL | 2002年 / 35卷 / 01期
关键词
Computer control systems - Feedforward neural networks - Inference engines - Linear control systems - Nonlinear control systems - Process control - Process engineering - Quality control - SCADA systems;
D O I
10.1177/002029400203500102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When on-line measurement devices are not available to perform the required task, an alternative approach is to estimate the variable using available on-line measurements and a model that relates these measurements to the quality parameter. Such a model is commonly called a "software sensor". In this paper, the concepts of software sensors and the issues that arise are highlighted using a bioprocess as a case study.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 50 条
  • [1] Inferential estimation of polymer quality using stacked neural networks
    Zhang, J
    Martin, EB
    Morris, AJ
    Kiparissides, C
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 : S1025 - S1030
  • [2] A practical approach for soil unit weight estimation using artificial neural networks
    Nierwinski, Helena Paula
    Pfitscher, Ricardo Jose
    Barra, Breno Salgado
    Menegaz, Talita
    Odebrecht, Edgar
    [J]. JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2023, 131
  • [3] Inferential estimation of polymer quality using bootstrap aggregated neural networks
    Zhang, J
    [J]. NEURAL NETWORKS, 1999, 12 (06) : 927 - 938
  • [4] Inferential Estimation of Texaco Coal Gasification Quality Using Stacked Neural Networks
    Guo, Rong
    Guo, Weiwei
    Shi, Dongchen
    [J]. 2008 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, VOLS 1 AND 2, PROCEEDINGS, 2008, : 760 - 763
  • [5] Direction of Arrival Estimation by Using Artificial Neural Networks
    Unlersen, Muhammes Fahri
    Yaldiz, Ercan
    [J]. UKSIM-AMSS 10TH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS), 2016, : 242 - 245
  • [6] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    [J]. JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [7] Efficient estimation of osteoporosis using artificial neural networks
    Lemineur, Gerald
    Harba, Rachid
    Kilic, Niyazi
    Ucan, Osman N.
    Osman, Onur
    Benhamou, Laurent
    [J]. IECON 2007: 33RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, CONFERENCE PROCEEDINGS, 2007, : 3039 - +
  • [8] DIRECTION OF ARRIVAL ESTIMATION USING ARTIFICIAL NEURAL NETWORKS
    JHA, S
    DURRANI, T
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1192 - 1201
  • [9] Probability density estimation using artificial neural networks
    Likas, A
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (02) : 167 - 175
  • [10] Estimation of daily evaporation using artificial neural networks
    Dogan, Emrah
    Is¸ik, Sabahattin
    Sandalci, Mehmet
    [J]. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2007, 18 (02): : 4119 - 4131