Hurst Parameter Estimation Using Artificial Neural Networks

被引:0
|
作者
Ledesma-Orozco, S. [1 ]
Ruiz-Pinales, J. [1 ]
Garcia-Hernandez, G. [1 ]
Cerda-Villafana, G. [1 ]
Hernandez-Fusilier, D. [1 ]
机构
[1] Univ Guanajuato, Guanajuato 36885, Mexico
关键词
Parameter estimation; time series; network traffic analysis; neural network; FRACTIONAL GAUSSIAN-NOISE; LONG-RANGE DEPENDENCE; APPROXIMATION;
D O I
暂无
中图分类号
学科分类号
摘要
The Hurst parameter captures the amount of long-range dependence (LRD) in a time series. There are several methods to estimate the Hurst parameter, being the most popular: the variance-time plot, the R/S plot, the periodogram, and Whittle's estimator. The first three are graphical methods, and the estimation accuracy depends on how the plot is interpreted and calculated. In contrast, Whittle's estimator is based on a maximum likelihood technique and does not depend on a graph reading; however, it is computationally expensive. A new method to estimate the Hurst parameter is proposed. This new method is based on an artificial neural network. Experimental results show that this method outperforms traditional approaches, and can be used on applications where a fast and accurate estimate of the Hurst parameter is required, i.e., computer network traffic control. Additionally, the Hurst parameter was computed on series of different length using several methods. The simulation results show that the proposed method is at least ten times faster than traditional methods.
引用
收藏
页码:227 / 241
页数:15
相关论文
共 50 条
  • [1] Artificial neural networks for parameter estimation in geophysics
    Calderón-Macías, C
    Sen, MK
    Stoffa, PL
    [J]. GEOPHYSICAL PROSPECTING, 2000, 48 (01) : 21 - 47
  • [2] Tumor model parameter estimation for therapy optimization using artificial neural networks
    Puskas, Melania
    Drexler, Daniel Andras
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 1254 - 1259
  • [3] Estimation of effective stress parameter of unsaturated soils by using artificial neural networks
    Kayadelen, C.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2008, 32 (09) : 1087 - 1106
  • [4] Parameter estimation in groundwater hydrology sing artificial neural networks
    Shigidi, A
    Garcia, LA
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2003, 17 (04) : 281 - 289
  • [5] Enhanced parameter estimation in multiparametric arterial spin labeling using artificial neural networks
    Ishida, Shota
    Fujiwara, Yasuhiro
    Matta, Yuki
    Takei, Naoyuki
    Kanamoto, Masayuki
    Kimura, Hirohiko
    Tsujikawa, Tetsuya
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 2163 - 2180
  • [6] Globally optimal bounding ellipsoid algorithm for parameter estimation using artificial neural networks
    Sun, XF
    Fan, YZ
    Zhang, FZ
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (01) : 47 - 53
  • [7] Stellar parameter estimation in O-type stars using artificial neural networks
    Flores, R. M.
    Corral, L. J.
    Fierro-Santillan, C. R.
    Navarro, S. G.
    [J]. ASTRONOMY AND COMPUTING, 2023, 45
  • [8] ELECTRIC LOAD PATTERN CLASSIFICATION USING PARAMETER ESTIMATION, CLUSTERING AND ARTIFICIAL NEURAL NETWORKS
    Buitrago, Jaime
    Abdulaal, Ahmed
    Asfour, Shihab
    [J]. INTERNATIONAL JOURNAL OF POWER AND ENERGY SYSTEMS, 2015, 35 (04): : 167 - 174
  • [9] Small signal S-parameter estimation of BJTs using artificial neural networks
    Majid, I
    Nadeem, AE
    Azam, FE
    [J]. INMIC 2004: 8th International Multitopic Conference, Proceedings, 2004, : 669 - 673
  • [10] Parameter estimation using compensatory neural networks
    M. Sinha
    P. K. Kalra
    K. Kumar
    [J]. Sadhana, 2000, 25 : 193 - 203