Stellar parameter estimation in O-type stars using artificial neural networks

被引:1
|
作者
Flores, R. M. [1 ]
Corral, L. J. [1 ,2 ]
Fierro-Santillan, C. R. [3 ]
Navarro, S. G. [1 ,2 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Econ Adm CUCEA, Zapopan 45100, Jal, Mexico
[2] Univ Guadalajara, Inst Astron & Meteorol IAM, Guadalajara 44130, Jal, Mexico
[3] Univ Nacl Autonoma Mexico, Escuela Nacl Colegio Ciencias & Humanidades, Plantel Sur ENCCH Sur, Cdmx 04500, Mexico
关键词
Deep learning; Methods: Data analysis; Stars: Fundamental parameters; Astronomical databases: Miscellaneous; ATMOSPHERIC PARAMETERS; CLASSIFICATION;
D O I
10.1016/j.ascom.2023.100760
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This work presents the results of the implementation of a deep learning system capable of estimating the effective temperature and surface gravity of O-type stars. The proposed system was trained with a database of 5,557 synthetic spectra computed with the stellar atmosphere code CMFGEN that covers stars with Teff from similar to 20,000 K to similar to 58,000 K, l og(L/L-circle dot) from 4.3 to 6.3 dex, log g from 2.4 to 4.2 dex, and mass from 9 to 120 M-circle dot. Important advantages proposed in this paper include using a set of equivalent width measurements over the optical region of the stellar spectra, which avoids processing the full spectra with the inherent computational cost and allows it to apply the same trained system over different spectra resolutions. The validation of the system was performed by processing a sample of twenty O-type stars taken from the IACOB database, and a subgroup of eleven stars of those twenty taken from The Galactic O-Star Spectroscopic Catalog (GOSC) with lower resolution. As complementary work, we show the results of a synthetic spectra fitting process with the aim of simplifying the comparison with other estimations and parameter fitting from the literature.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] THE TERMINAL VELOCITY OF THE STELLAR WIND IN O-TYPE STARS
    BLOMME, R
    ASTRONOMY & ASTROPHYSICS, 1990, 229 (02) : 513 - 526
  • [2] SEARCH FOR BINARIES AND STELLAR WINDS AMONG O-TYPE STARS
    BOHANNAN, B
    GARMANY, CD
    ASTROPHYSICAL JOURNAL, 1978, 223 (03): : 908 - 919
  • [3] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [4] Improvement in parameter estimation of Pareto type II clutter using artificial neural networks
    C. Alioua
    A. Mezache
    F. Soltani
    Signal, Image and Video Processing, 2025, 19 (5)
  • [5] THE WINDS OF O-STARS .2. THE TERMINAL VELOCITIES OF STELLAR WINDS OF O-TYPE STARS
    GROENEWEGEN, MAT
    LAMERS, HJGLM
    PAULDRACH, AWA
    ASTRONOMY & ASTROPHYSICS, 1989, 221 (01) : 78 - 88
  • [6] Artificial neural networks for parameter estimation in geophysics
    Calderón-Macías, C
    Sen, MK
    Stoffa, PL
    GEOPHYSICAL PROSPECTING, 2000, 48 (01) : 21 - 47
  • [7] Atmospheric models for O-type stars
    Hoffmann, TL
    Pauldrach, AWA
    Planetary Nebulae as Astronomical Tools, 2005, 804 : 154 - 154
  • [8] PHOTOMETRIC MONITORING OF O-TYPE STARS
    BALONA, LA
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1992, 254 (03) : 404 - 412
  • [9] Fundamental properties of O-type stars
    Heap, SR
    Lanz, T
    Hubeny, I
    ASTROPHYSICAL JOURNAL, 2006, 638 (01): : 409 - 432
  • [10] On the origin of field O-type stars
    Schilbach, E.
    Roeser, S.
    ASTRONOMY & ASTROPHYSICS, 2008, 489 (01) : 105 - 114