Stellar parameter estimation in O-type stars using artificial neural networks

被引:1
|
作者
Flores, R. M. [1 ]
Corral, L. J. [1 ,2 ]
Fierro-Santillan, C. R. [3 ]
Navarro, S. G. [1 ,2 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Econ Adm CUCEA, Zapopan 45100, Jal, Mexico
[2] Univ Guadalajara, Inst Astron & Meteorol IAM, Guadalajara 44130, Jal, Mexico
[3] Univ Nacl Autonoma Mexico, Escuela Nacl Colegio Ciencias & Humanidades, Plantel Sur ENCCH Sur, Cdmx 04500, Mexico
关键词
Deep learning; Methods: Data analysis; Stars: Fundamental parameters; Astronomical databases: Miscellaneous; ATMOSPHERIC PARAMETERS; CLASSIFICATION;
D O I
10.1016/j.ascom.2023.100760
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This work presents the results of the implementation of a deep learning system capable of estimating the effective temperature and surface gravity of O-type stars. The proposed system was trained with a database of 5,557 synthetic spectra computed with the stellar atmosphere code CMFGEN that covers stars with Teff from similar to 20,000 K to similar to 58,000 K, l og(L/L-circle dot) from 4.3 to 6.3 dex, log g from 2.4 to 4.2 dex, and mass from 9 to 120 M-circle dot. Important advantages proposed in this paper include using a set of equivalent width measurements over the optical region of the stellar spectra, which avoids processing the full spectra with the inherent computational cost and allows it to apply the same trained system over different spectra resolutions. The validation of the system was performed by processing a sample of twenty O-type stars taken from the IACOB database, and a subgroup of eleven stars of those twenty taken from The Galactic O-Star Spectroscopic Catalog (GOSC) with lower resolution. As complementary work, we show the results of a synthetic spectra fitting process with the aim of simplifying the comparison with other estimations and parameter fitting from the literature.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [31] Application of artificial neural networks to parameter estimation of dynamical systems
    Materka, Andrzej
    Conference Record - IEEE Instrumentation and Measurement Technology Conference, 1994, 1 : 123 - 126
  • [32] Parameter estimation in groundwater hydrology sing artificial neural networks
    Shigidi, A
    Garcia, LA
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2003, 17 (04) : 281 - 289
  • [33] Enhanced parameter estimation in multiparametric arterial spin labeling using artificial neural networks
    Ishida, Shota
    Fujiwara, Yasuhiro
    Matta, Yuki
    Takei, Naoyuki
    Kanamoto, Masayuki
    Kimura, Hirohiko
    Tsujikawa, Tetsuya
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 2163 - 2180
  • [34] Globally optimal bounding ellipsoid algorithm for parameter estimation using artificial neural networks
    Sun, XF
    Fan, YZ
    Zhang, FZ
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (01) : 47 - 53
  • [35] ELECTRIC LOAD PATTERN CLASSIFICATION USING PARAMETER ESTIMATION, CLUSTERING AND ARTIFICIAL NEURAL NETWORKS
    Buitrago, Jaime
    Abdulaal, Ahmed
    Asfour, Shihab
    INTERNATIONAL JOURNAL OF POWER AND ENERGY SYSTEMS, 2015, 35 (04): : 167 - 174
  • [36] Small signal S-parameter estimation of BJTs using artificial neural networks
    Majid, I
    Nadeem, AE
    Azam, FE
    INMIC 2004: 8th International Multitopic Conference, Proceedings, 2004, : 669 - 673
  • [37] Parameter estimation using compensatory neural networks
    Sinha, M
    Kalra, PK
    Kumar, K
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2000, 25 (2): : 193 - 203
  • [38] Parameter estimation using compensatory neural networks
    M. Sinha
    P. K. Kalra
    K. Kumar
    Sadhana, 2000, 25 : 193 - 203
  • [39] Wave parameter estimation using neural networks
    Agrawal, JD
    Deo, MC
    MARINE STRUCTURES, 2004, 17 (07) : 536 - 550
  • [40] Artificial neural networks in stellar astronomy
    Gulati, RK
    Altamirano, L
    IX LATIN AMERICAN REGIONAL MEETING OF THE INTERNATIONAL-ASTRONOMICAL-UNION, 2001, 11 : 85 - 86