ECoPANN: A Framework for Estimating Cosmological Parameters Using Artificial Neural Networks

被引:19
|
作者
Wang, Guo-Jian [1 ]
Li, Si-Yao [2 ]
Xia, Jun-Qing [1 ]
机构
[1] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China
[2] SenseTime Res, Beijing 100080, Peoples R China
来源
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Cosmological parameters; Observational cosmology; Computational methods; Astronomy data analysis; Neural networks; STRONG GRAVITATIONAL LENSES; REIONIZATION;
D O I
10.3847/1538-4365/aba190
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we present a new method to estimate cosmological parameters accurately based on the artificial neural network (ANN), and a code called ECoPANN (Estimating Cosmological Parameters with ANN) is developed to achieve parameter inference. We test the ANN method by estimating the basic parameters of the concordance cosmological model using the simulated temperature power spectrum of the cosmic microwave background (CMB). The results show that the ANN performs excellently on best-fit values and errors of parameters, as well as correlations between parameters when compared with that of the Markov Chain Monte Carlo (MCMC) method. Besides, for a well-trained ANN model, it is capable of estimating parameters for multiple experiments that have different precisions, which can greatly reduce the consumption of time and computing resources for parameter inference. Furthermore, we extend the ANN to a multibranch network to achieve a joint constraint on parameters. We test the multibranch network using the simulated temperature and polarization power spectra of the CMB, Type Ia supernovae, and baryon acoustic oscillations and almost obtain the same results as the MCMC method. Therefore, we propose that the ANN can provide an alternative way to accurately and quickly estimate cosmological parameters, and ECoPANN can be applied to the research of cosmology and even other broader scientific fields.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Estimating Transformer Oil Parameters Using Artificial Neural Networks
    Ghunem, Refat Atef
    El-Hag, Ayman H.
    Assaleh, Khaled
    Al Dhaheri, Fatima
    [J]. 2009 INTERNATIONAL CONFERENCE ON ELECTRIC POWER AND ENERGY CONVERSION SYSTEMS (EPECS 2009), 2009, : 207 - +
  • [2] Estimating Soil Temperature With Artificial Neural Networks Using Meteorological Parameters
    Aslay, Fulya
    Ozen, Ustun
    [J]. JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2013, 16 (04): : 139 - 145
  • [3] Estimating anisotropic aquifer parameters by artificial neural networks
    Lin, Hsien-Tsung
    Ke, Kai-Yuan
    Chen, Chu-Hui
    Wu, Shih-Ching
    Tan, Yih-Chi
    [J]. HYDROLOGICAL PROCESSES, 2010, 24 (22) : 3237 - 3250
  • [4] Estimating Drilling Parameters for Diamond Bit Drilling Operations Using Artificial Neural Networks
    Akin, Serhat
    Karpuz, Celal
    [J]. INTERNATIONAL JOURNAL OF GEOMECHANICS, 2008, 8 (01) : 68 - 73
  • [5] Estimating parameters of optical membrane pH-sensors using artificial neural networks
    Kuznetsov, VV
    D'yakov, AN
    [J]. JOURNAL OF ANALYTICAL CHEMISTRY, 1999, 54 (11) : 1076 - 1081
  • [6] USING ARTIFICIAL NEURAL NETWORKS IN ESTIMATING WOOD RESISTANCE
    Miguel, Eder Pereira
    de Melo, Rafael Rodolfo
    Serenini Junior, Aercio
    Soares Del Menezzi, Cldudio Henrique
    [J]. MADERAS-CIENCIA Y TECNOLOGIA, 2018, 20 (04): : 531 - 542
  • [8] Estimating photometric redshifts with artificial neural networks and multi-parameters
    Li, Li-Li
    Zhang, Yan-Xia
    Zhao, Yong-Heng
    Yang, Da-Wei
    [J]. CHINESE JOURNAL OF ASTRONOMY AND ASTROPHYSICS, 2007, 7 (03): : 448 - 456
  • [9] Estimating Parameters of Structural Models Using Neural Networks
    Wei, Yanhao
    Jiang, Zhenling
    [J]. MARKETING SCIENCE, 2024,
  • [10] Estimating Peak Floor Acceleration Using Artificial Neural Networks
    Aloqaily, Wael
    Head, Monique
    Attoh-Okine, Nii
    [J]. LIFELINES 2022: ADVANCING LIFELINE ENGINEERING FOR COMMUNITY RESILIENCE, 2022, : 648 - 659