Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks

被引:8
|
作者
Ciylan, B. [1 ]
机构
[1] Gazi Univ, Dept Elect & Comp Educ, Fac Tech Educ, Ankara, Turkey
关键词
SEEBECK COEFFICIENT; TEST SYSTEM; MODEL; DESIGN;
D O I
10.5755/j01.eee.116.10.884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
B. Ciylan. Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks // Electronics and Electrical Engineering. - Kaunas: Technologija, 2011. - No. 10(116). - P. 63-66. Determination of instant dynamic output parameters of thermoelectric module which is worked in any system is very important. Despite of the new methods this process takes a lot of times. In this study, two artificial neural network (ANN) models are designed for the estimation of dynamic output parameters at any desired moment of the thermoelectric modules. MATLAB-ANN tools and an ANN simulator program are used for creating the models. Experimental dynamic output parameters data which obtained from eight different thermal load conditions were used for training the ANN Models. On the designed ANN models which were created to estimate instant dynamic output parameters of the thermoelectric module, the Levenberg-Marquardt (LM) learning algorithm has been used. The results obtained with these ANN models, compared with the experimental data and it was shown in graphs. III. 6, bibl. 20, tabl. 1 (in English; abstracts in English and Lithuanian).
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
  • [31] The determination of cardiac surgical risk using artificial neural networks
    Buzatu, DA
    Taylor, KK
    Peret, DC
    Darsey, JA
    Lang, NP
    JOURNAL OF SURGICAL RESEARCH, 2001, 95 (01) : 61 - 66
  • [32] First carbonation alkalinity neural determination using artificial networks
    Dobrowolski, W
    Iciek, J
    INTERNATIONAL SUGAR JOURNAL, 2003, 105 (1256): : 358 - +
  • [33] The prediction of photovoltaic module temperature with artificial neural networks
    Ceylan, Ilhan
    Erkaymaz, Okan
    Gedik, Engin
    Gurel, Ali Etem
    Case Studies in Thermal Engineering, 2014, 3 : 11 - 20
  • [34] The prediction of photovoltaic module temperature with artificial neural networks
    Ceylan, Ilhan
    Erkaymaz, Okan
    Gedik, Engin
    Gurel, Ali Etem
    CASE STUDIES IN THERMAL ENGINEERING, 2014, 3 : 11 - 20
  • [35] CPV module electric characterisation by artificial neural networks
    Garcia-Domingo, B.
    Piliougine, M.
    Elizondo, D.
    Aguilera, J.
    RENEWABLE ENERGY, 2015, 78 : 173 - 181
  • [36] Predicting Archimedes Screw Generator Power Output Using Artificial Neural Networks
    Kozyn, Andrew
    Songin, Kathleen
    Gharabaghi, Bahram
    Lubitz, William David
    JOURNAL OF HYDRAULIC ENGINEERING, 2018, 144 (03)
  • [37] Prediction of street tree morphological parameters using artificial neural networks
    Jutras, Pierre
    Prasher, Shiv O.
    Mehuys, Guy R.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2009, 67 (1-2) : 9 - 17
  • [38] Estimation of Coal's Sorption Parameters Using Artificial Neural Networks
    Skiba, Marta
    Mlynarczuk, Mariusz
    MATERIALS, 2020, 13 (23) : 1 - 11
  • [39] Identification of minerals using artificial neural networks based on Moessbauer parameters
    Shi, Hairong
    Xiao, Yuming
    Huang, Hongbo
    Wu, Dongmin
    Ali, A. M.
    Li, Min
    Li, Shimin
    Xia, Yuanfu
    He Jishu/Nuclear Techniques, 2000, 23 (07): : 467 - 474
  • [40] On-line identification of modal parameters using artificial neural networks
    Lim, TW
    Cabell, RH
    Silcox, RJ
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1996, 118 (04): : 649 - 656