Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks

被引:8
|
作者
Ciylan, B. [1 ]
机构
[1] Gazi Univ, Dept Elect & Comp Educ, Fac Tech Educ, Ankara, Turkey
关键词
SEEBECK COEFFICIENT; TEST SYSTEM; MODEL; DESIGN;
D O I
10.5755/j01.eee.116.10.884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
B. Ciylan. Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks // Electronics and Electrical Engineering. - Kaunas: Technologija, 2011. - No. 10(116). - P. 63-66. Determination of instant dynamic output parameters of thermoelectric module which is worked in any system is very important. Despite of the new methods this process takes a lot of times. In this study, two artificial neural network (ANN) models are designed for the estimation of dynamic output parameters at any desired moment of the thermoelectric modules. MATLAB-ANN tools and an ANN simulator program are used for creating the models. Experimental dynamic output parameters data which obtained from eight different thermal load conditions were used for training the ANN Models. On the designed ANN models which were created to estimate instant dynamic output parameters of the thermoelectric module, the Levenberg-Marquardt (LM) learning algorithm has been used. The results obtained with these ANN models, compared with the experimental data and it was shown in graphs. III. 6, bibl. 20, tabl. 1 (in English; abstracts in English and Lithuanian).
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
  • [21] Estimating Transformer Oil Parameters Using Artificial Neural Networks
    Ghunem, Refat Atef
    El-Hag, Ayman H.
    Assaleh, Khaled
    Al Dhaheri, Fatima
    2009 INTERNATIONAL CONFERENCE ON ELECTRIC POWER AND ENERGY CONVERSION SYSTEMS (EPECS 2009), 2009, : 207 - +
  • [22] Determining the Rheological Parameters of Polymers Using Artificial Neural Networks
    Chepurnenko, Anton
    POLYMERS, 2022, 14 (19)
  • [23] Backcalculation of pavement layer parameters using Artificial Neural Networks
    Saltan, M
    Terzi, S
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2004, 11 (01) : 38 - 42
  • [24] Estimation of strength parameters of rock using artificial neural networks
    Sarkar, Kripamoy
    Tiwary, Avyaktanand
    Singh, T. N.
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2010, 69 (04) : 599 - 606
  • [25] Estimation of air pollution parameters using artificial neural networks
    Cigizoglu, HK
    Alp, K
    Kömürcü, M
    ADVANCES IN AIR POLLUTION MODELING FOR ENVIRONMENTAL SECURITY, 2005, 54 : 63 - 75
  • [26] Estimation of strength parameters of rock using artificial neural networks
    Kripamoy Sarkar
    Avyaktanand Tiwary
    T. N. Singh
    Bulletin of Engineering Geology and the Environment, 2010, 69 : 599 - 606
  • [27] Reservoir parameters determination using artificial neural networks: Ras Fanar field, Gulf of Suez, Egypt
    Aref Lashin
    Samy Serag El Din
    Arabian Journal of Geosciences, 2013, 6 : 2789 - 2806
  • [28] Reservoir parameters determination using artificial neural networks: Ras Fanar field, Gulf of Suez, Egypt
    Lashin, Aref
    El Din, Samy Serag
    ARABIAN JOURNAL OF GEOSCIENCES, 2013, 6 (08) : 2789 - 2806
  • [29] Determination of the length of hydraulic jumps using artificial neural networks
    Naseri, Mandi
    Othman, Faridah
    ADVANCES IN ENGINEERING SOFTWARE, 2012, 48 : 27 - 31
  • [30] Determination of engine misfire location using artificial neural networks
    Ghazaly N.M.
    Abdel-Fattah M.
    Makrahy M.M.
    International Journal of Vehicle Structures and Systems, 2020, 11 (04) : 407 - 412