Detecting unambiguously non-Abelian geometric phases with trapped ions

被引:18
|
作者
Zhang, Xin-Ding [1 ]
Wang, Z. D. [2 ,3 ]
Hu, Liang-Bin [1 ]
Zhang, Zhi-Ming [4 ]
Zhu, Shi-Liang [1 ,2 ,3 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Inst Condensed Matter Phys, Guangzhou, Peoples R China
[2] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[3] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China
[4] S China Normal Univ, Lab Photon Informat Technol, Guangzhou, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2008年 / 10卷
关键词
D O I
10.1088/1367-2630/10/4/043031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an experimentally feasible scheme to disclose the noncommutative effects induced by a light-induced non-Abelian gauge structure with trapped ions. Under an appropriate configuration, a true non-Abelian gauge potential naturally arises in connection with the geometric phase associated with two degenerated dark states in a four-state atomic system interacting with three pulsed laser fields. We show that the population in the atomic state at the end of a composed path formed by two closed loops C-1 and C-2 in the parameter space can be significantly different from the composed counter-ordered path. This population difference is directly induced by the noncommutative feature of non-Abelian geometric phases and can be detected unambiguously with current technology.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Detecting non-Abelian geometric phases with superconducting nanocircuits
    Feng, Zhi-Bo
    Zhang, Yuan-Min
    Wang, Guo-Zhi
    Han, Hongpei
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (10): : 1859 - 1863
  • [2] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [3] Detecting non-Abelian geometric phases with three-level Λ systems
    Du, Yan-Xiong
    Xue, Zheng-Yuan
    Zhang, Xin-Ding
    Yan, Hui
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):
  • [4] Comment on "Detecting non-Abelian geometric phases with three-level Λ systems"
    Ericsson, Marie
    Sjoqvist, Erik
    [J]. PHYSICAL REVIEW A, 2013, 87 (03):
  • [5] Detecting non-Abelian geometric phase in circuit QED
    Peng, Man-Lv
    Zhou, Jian
    Xue, Zheng-Yuan
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2739 - 2747
  • [6] Non-Abelian geometric phases in periodically driven systems
    Novicenko, Viktor
    Juzeliunas, Gediminas
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [7] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):
  • [8] Detecting non-Abelian geometric phase in circuit QED
    Man-Lv Peng
    Jian Zhou
    Zheng-Yuan Xue
    [J]. Quantum Information Processing, 2013, 12 : 2739 - 2747
  • [9] Non-Abelian generalization of off-diagonal geometric phases
    Kult, D.
    Aberg, J.
    Sjoqvist, E.
    [J]. EPL, 2007, 78 (06)
  • [10] Particle-number threshold for non-Abelian geometric phases
    Pinske, Julien
    Burgtorf, Vincent
    Scheel, Stefan
    [J]. PHYSICAL REVIEW A, 2023, 107 (06)