Particle-number threshold for non-Abelian geometric phases

被引:0
|
作者
Pinske, Julien [1 ]
Burgtorf, Vincent [1 ]
Scheel, Stefan [1 ]
机构
[1] Univ Rostock, Inst Phys, Albert Einstein Str 23-24, D-18059 Rostock, Germany
关键词
QUANTUM; THEOREM; STATES;
D O I
10.1103/PhysRevA.107.062217
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When a quantum state traverses a path, while being under the influence of a gauge potential, it acquires a geometric phase that is often more than just a scalar quantity. The variety of unitary transformations that can be realized by this form of parallel transport depends crucially on the number of particles involved in the evolution. Here, we introduce a particle-number threshold (PNT) that assesses a system's capabilities to perform purely geometric manipulations of quantum states. This threshold gives the minimal number of particles necessary to fully exploit a system's potential to generate non-Abelian geometric phases. Therefore, the PNT might be useful for evaluating the resource demands of a holonomic quantum computer. We benchmark our findings on bosonic systems relevant to linear and nonlinear quantum optics.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [2] Detecting non-Abelian geometric phases with superconducting nanocircuits
    Feng, Zhi-Bo
    Zhang, Yuan-Min
    Wang, Guo-Zhi
    Han, Hongpei
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (10): : 1859 - 1863
  • [3] Non-Abelian geometric phases in periodically driven systems
    Novicenko, Viktor
    Juzeliunas, Gediminas
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [4] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):
  • [5] Non-Abelian generalization of off-diagonal geometric phases
    Kult, D.
    Aberg, J.
    Sjoqvist, E.
    [J]. EPL, 2007, 78 (06)
  • [6] Generation of non-Abelian geometric phases in degenerate atomic transitions
    Simeonov, Lachezar S.
    Vitanov, Nikolay V.
    [J]. PHYSICAL REVIEW A, 2017, 96 (03)
  • [7] Non-Abelian geometric phases in a system of coupled quantum bits
    Mousolou, Vahid Azimi
    Sjoqvist, Erik
    [J]. PHYSICAL REVIEW A, 2014, 89 (02):
  • [8] Non-Abelian geometric phases carried by the spin fluctuation tensor
    Bharath, H. M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [9] Detecting unambiguously non-Abelian geometric phases with trapped ions
    Zhang, Xin-Ding
    Wang, Z. D.
    Hu, Liang-Bin
    Zhang, Zhi-Ming
    Zhu, Shi-Liang
    [J]. NEW JOURNAL OF PHYSICS, 2008, 10
  • [10] Non-Abelian Geometric Dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (06)