Non-Abelian geometric phases in periodically driven systems

被引:10
|
作者
Novicenko, Viktor [1 ]
Juzeliunas, Gediminas [1 ]
机构
[1] Vilnius Univ, Inst Theoret Phys & Astron, Sauletekio Ave 3, LT-10257 Vilnius, Lithuania
关键词
GAUGE STRUCTURE; ATOMS;
D O I
10.1103/PhysRevA.100.012127
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a periodically driven quantum system described by a Hamiltonian which is the product of a slowly varying Hermitian operator V (lambda(t)) and a dimensionless periodic function with zero average. We demonstrate that the adiabatic evolution of the system within a fully degenerate Floquet band is accompanied by non-Abelian (noncommuting) geometric phases appearing when the slowly varying parameter lambda = lambda(t) completes a closed loop. The geometric phases can have significant values even after completing a single cycle of the slow variable. Furthermore, there are no dynamical phases masking the non-Abelian Floquet geometric phases, as the former average to zero over an oscillation period. This can be used to precisely control the evolution of quantum systems, in particular for performing qubit operations. The general formalism is illustrated by analyzing a spin in an oscillating magnetic field with arbitrary strength and a slowly changing direction.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Non-Abelian geometric potentials and spin-orbit coupling for periodically driven systems
    Rackauskas, Povilas
    Novicenko, Viktor
    Pu, Han
    Juzeliunas, Gediminas
    [J]. PHYSICAL REVIEW A, 2019, 100 (06)
  • [2] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [3] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):
  • [4] Non-Abelian Anyons in Periodically Driven Abelian Spin Liquids
    Petiziol, Francesco
    [J]. PHYSICAL REVIEW LETTERS, 2024, 133 (03)
  • [5] Detecting non-Abelian geometric phases with three-level Λ systems
    Du, Yan-Xiong
    Xue, Zheng-Yuan
    Zhang, Xin-Ding
    Yan, Hui
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):
  • [6] Detecting non-Abelian geometric phases with superconducting nanocircuits
    Feng, Zhi-Bo
    Zhang, Yuan-Min
    Wang, Guo-Zhi
    Han, Hongpei
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (10): : 1859 - 1863
  • [7] Comment on "Detecting non-Abelian geometric phases with three-level Λ systems"
    Ericsson, Marie
    Sjoqvist, Erik
    [J]. PHYSICAL REVIEW A, 2013, 87 (03):
  • [8] Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems
    Robert-Jan Slager
    Adrien Bouhon
    F. Nur Ünal
    [J]. Nature Communications, 15
  • [9] Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems
    Slager, Robert-Jan
    Bouhon, Adrien
    Unal, F. Nur
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Non-Abelian generalization of off-diagonal geometric phases
    Kult, D.
    Aberg, J.
    Sjoqvist, E.
    [J]. EPL, 2007, 78 (06)