Detecting non-Abelian geometric phases with superconducting nanocircuits

被引:8
|
作者
Feng, Zhi-Bo [1 ]
Zhang, Yuan-Min [1 ]
Wang, Guo-Zhi [1 ]
Han, Hongpei [1 ]
机构
[1] Xuchang Univ, Coll Elect & Informat Engn, Xuchang 461000, Peoples R China
来源
关键词
Superconducting nanocircuit; Non-Abelian geometric phase; Microwave pulse; HOLONOMIC QUANTUM COMPUTATION; POPULATION TRANSFER; GAUGE STRUCTURE; BERRYS PHASE; STATE; ATOMS;
D O I
10.1016/j.physe.2009.08.004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose a feasible scheme to detect the noncommutative feature of non-Abelian geometric phases (NAGP) with superconducting nanocircuits. The induced NAGP associated with two-fold degenerate states naturally arises in the chosen four-level subsystem interacting with the microwave pulses. We explicitly show the noncommutative effect of the NAGP by considering the difference between the level populations at the end of the composed evolution loops l(2)l(1) and the counter-ordered one l(1)l(2). The scheme opens the new possibility for detecting the fundamental characteristics of the NAGP with superconducting circuit devices. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1859 / 1863
页数:5
相关论文
共 50 条
  • [1] Detecting unambiguously non-Abelian geometric phases with trapped ions
    Zhang, Xin-Ding
    Wang, Z. D.
    Hu, Liang-Bin
    Zhang, Zhi-Ming
    Zhu, Shi-Liang
    [J]. NEW JOURNAL OF PHYSICS, 2008, 10
  • [2] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [3] Detecting non-Abelian geometric phases with three-level Λ systems
    Du, Yan-Xiong
    Xue, Zheng-Yuan
    Zhang, Xin-Ding
    Yan, Hui
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):
  • [4] Detection of geometric phases in superconducting nanocircuits
    Giuseppe Falci
    Rosario Fazio
    G. Massimo Palma
    Jens Siewert
    Vlatko Vedral
    [J]. Nature, 2000, 407 : 355 - 358
  • [5] Detection of geometric phases in superconducting nanocircuits
    Falci, G
    Fazio, R
    Palma, GM
    Siewert, J
    Vedral, V
    [J]. NATURE, 2000, 407 (6802) : 355 - 358
  • [6] Comment on "Detecting non-Abelian geometric phases with three-level Λ systems"
    Ericsson, Marie
    Sjoqvist, Erik
    [J]. PHYSICAL REVIEW A, 2013, 87 (03):
  • [7] Detecting non-Abelian geometric phase in circuit QED
    Peng, Man-Lv
    Zhou, Jian
    Xue, Zheng-Yuan
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2739 - 2747
  • [8] Non-Abelian geometric phases in periodically driven systems
    Novicenko, Viktor
    Juzeliunas, Gediminas
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [9] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):
  • [10] Detecting non-Abelian geometric phase in circuit QED
    Man-Lv Peng
    Jian Zhou
    Zheng-Yuan Xue
    [J]. Quantum Information Processing, 2013, 12 : 2739 - 2747