Detecting non-Abelian geometric phase in circuit QED

被引:0
|
作者
Peng, Man-Lv [1 ]
Zhou, Jian [1 ,2 ]
Xue, Zheng-Yuan [1 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Lab Quantum Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Anhui Xinhua Univ, Hefei 230088, Peoples R China
关键词
Non-Abelian geometric phase; Circuit QED; Transmon qubit; QUANTUM COMPUTATION; BERRYS PHASE;
D O I
10.1007/s11128-013-0560-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme for detecting noncommutative feature of the non-Abelian geometric phase in circuit QED, which involves three transmon qubits capacitively coupled to an one-dimensional transmission line resonator. By controlling the external magnetic flux of the transmon qubits, we can obtain an effective tripod interaction of our circuit QED setup. The noncommutative feature of the non-Abelian geometric phase is manifested that for an initial state undergo two specific loops in different order will result in different final states. Our numerical calculations show that this difference can be unambiguously detected in the proposed system.
引用
收藏
页码:2739 / 2747
页数:9
相关论文
共 50 条
  • [1] Detecting non-Abelian geometric phase in circuit QED
    Man-Lv Peng
    Jian Zhou
    Zheng-Yuan Xue
    Quantum Information Processing, 2013, 12 : 2739 - 2747
  • [2] Detecting non-Abelian geometric phases with superconducting nanocircuits
    Feng, Zhi-Bo
    Zhang, Yuan-Min
    Wang, Guo-Zhi
    Han, Hongpei
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (10): : 1859 - 1863
  • [3] NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE
    ANANDAN, J
    PHYSICS LETTERS A, 1988, 133 (4-5) : 171 - 175
  • [4] SYMPLECTIC STRUCTURE FOR THE NON-ABELIAN GEOMETRIC PHASE
    CHRUSCINSKI, D
    PHYSICS LETTERS A, 1994, 186 (1-2) : 1 - 4
  • [5] Detecting unambiguously non-Abelian geometric phases with trapped ions
    Zhang, Xin-Ding
    Wang, Z. D.
    Hu, Liang-Bin
    Zhang, Zhi-Ming
    Zhu, Shi-Liang
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [6] Phase space formulation of the Abelian and non-Abelian quantum geometric tensor
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [8] Noncyclic geometric phase and its non-Abelian generalization
    Mostafazadeh, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46): : 8157 - 8171
  • [9] NON-ABELIAN GEOMETRIC PHASE AND GENERALIZED INVARIANT METHOD
    KWON, O
    AHN, C
    KIM, Y
    PHYSICAL REVIEW A, 1992, 46 (09): : 5354 - 5357
  • [10] Non-Abelian Geometric Dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    PHYSICAL REVIEW LETTERS, 2019, 123 (06)