Noncyclic geometric phase and its non-Abelian generalization

被引:41
|
作者
Mostafazadeh, A [1 ]
机构
[1] Koc Univ, Dept Math, TR-80860 Istanbul, Turkey
来源
关键词
D O I
10.1088/0305-4470/32/46/312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the theory of dynamical invariants to yield a simple derivation of noncyclic analogues of the Abelian and non-Abelian geometric phases. This derivation relies only on the principle of gauge invariance and elucidates the existing definitions of the Abelian nancyclic geometric phase. We also discuss the adiabatic limit of the noncyclic geometric phase and compute the adiabatic non-Abelian noncyclic geometric phase for a spin-1 magnetic (or electric) quadrupole interacting with a precessing magnetic (electric) field.
引用
收藏
页码:8157 / 8171
页数:15
相关论文
共 50 条
  • [1] Non-Abelian generalization of off-diagonal geometric phases
    Kult, D.
    Aberg, J.
    Sjoqvist, E.
    [J]. EPL, 2007, 78 (06)
  • [2] NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE
    ANANDAN, J
    [J]. PHYSICS LETTERS A, 1988, 133 (4-5) : 171 - 175
  • [3] SYMPLECTIC STRUCTURE FOR THE NON-ABELIAN GEOMETRIC PHASE
    CHRUSCINSKI, D
    [J]. PHYSICS LETTERS A, 1994, 186 (1-2) : 1 - 4
  • [4] Phase space formulation of the Abelian and non-Abelian quantum geometric tensor
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [5] Detecting non-Abelian geometric phase in circuit QED
    Peng, Man-Lv
    Zhou, Jian
    Xue, Zheng-Yuan
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2739 - 2747
  • [6] Theory and calculation of abelian and non-abelian geometric phase factors with SpinDynamica
    Bengs, Christian
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2023, 357
  • [7] Detecting non-Abelian geometric phase in circuit QED
    Man-Lv Peng
    Jian Zhou
    Zheng-Yuan Xue
    [J]. Quantum Information Processing, 2013, 12 : 2739 - 2747
  • [8] NON-ABELIAN GEOMETRIC PHASE AND GENERALIZED INVARIANT METHOD
    KWON, O
    AHN, C
    KIM, Y
    [J]. PHYSICAL REVIEW A, 1992, 46 (09): : 5354 - 5357
  • [9] Non-Abelian Geometric Dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [10] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101