SYMPLECTIC STRUCTURE FOR THE NON-ABELIAN GEOMETRIC PHASE

被引:2
|
作者
CHRUSCINSKI, D
机构
[1] Institute of Physics, Nicholas Copernicus University, 87-100 Toruń
关键词
D O I
10.1016/0375-9601(94)90911-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We split the non-Abelian geometric factor in such a way that part of it may be derived from the symplectic structure in an appropriate space of states.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [1] Non-Abelian Symplectic Cuts and the Geometric Quantization of Noncompact Manifolds
    Jonathan Weitsman
    [J]. Letters in Mathematical Physics, 2001, 56 : 31 - 40
  • [2] On non-Abelian symplectic cutting
    Martens, Johan
    Thaddeus, Michael
    [J]. TRANSFORMATION GROUPS, 2012, 17 (04) : 1059 - 1084
  • [3] On non-Abelian symplectic cutting
    Johan Martens
    Michael Thaddeus
    [J]. Transformation Groups, 2012, 17 : 1059 - 1084
  • [4] NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE
    ANANDAN, J
    [J]. PHYSICS LETTERS A, 1988, 133 (4-5) : 171 - 175
  • [5] Phase space formulation of the Abelian and non-Abelian quantum geometric tensor
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [6] Detecting non-Abelian geometric phase in circuit QED
    Peng, Man-Lv
    Zhou, Jian
    Xue, Zheng-Yuan
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2739 - 2747
  • [7] Theory and calculation of abelian and non-abelian geometric phase factors with SpinDynamica
    Bengs, Christian
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2023, 357
  • [8] Non-abelian convexity by symplectic cuts
    Lerman, E
    Meinrenken, E
    Tolman, S
    Woodward, C
    [J]. TOPOLOGY, 1998, 37 (02) : 245 - 259
  • [9] Noncyclic geometric phase and its non-Abelian generalization
    Mostafazadeh, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46): : 8157 - 8171
  • [10] Detecting non-Abelian geometric phase in circuit QED
    Man-Lv Peng
    Jian Zhou
    Zheng-Yuan Xue
    [J]. Quantum Information Processing, 2013, 12 : 2739 - 2747