Non-Abelian Symplectic Cuts and the Geometric Quantization of Noncompact Manifolds

被引:0
|
作者
Jonathan Weitsman
机构
[1] University of California,Department of Mathematics
来源
关键词
geometric quantization; symplectic cuts; noncompact manifold;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, ω) be a Hamiltonian U(n)-space with proper moment map. In the case where n = 1, Lerman constructed a one-parameter family of Hamiltonian U(1)-spaces Mξ called the symplectic cuts of M. We generalize this construction to Hamiltonian U(n) spaces. Motivated by recent theorems that show that 'quantization commutes with reduction,' we next give a definition of geometric quantization for noncompact Hamiltonian G-spaces with proper moment map, and use our cutting technique to illustrate the proof of existence of such quantizations in the case of U(n) spaces. We then show (Theorem 1) that such quantizations exist in general.
引用
收藏
页码:31 / 40
页数:9
相关论文
共 50 条
  • [1] Non-Abelian symplectic cuts and the geometric quantization of noncompact manifolds - Dedicated to the memory of Moshe Flato
    Weitsman, J
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2001, 56 (01) : 31 - 40
  • [2] Non-abelian convexity by symplectic cuts
    Lerman, E
    Meinrenken, E
    Tolman, S
    Woodward, C
    [J]. TOPOLOGY, 1998, 37 (02) : 245 - 259
  • [3] SYMPLECTIC STRUCTURE FOR THE NON-ABELIAN GEOMETRIC PHASE
    CHRUSCINSKI, D
    [J]. PHYSICS LETTERS A, 1994, 186 (1-2) : 1 - 4
  • [4] Geometric Quantization on Kahler and Symplectic Manifolds
    Ma, Xiaonan
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 785 - 810
  • [5] On non-Abelian symplectic cutting
    Martens, Johan
    Thaddeus, Michael
    [J]. TRANSFORMATION GROUPS, 2012, 17 (04) : 1059 - 1084
  • [6] On non-Abelian symplectic cutting
    Johan Martens
    Michael Thaddeus
    [J]. Transformation Groups, 2012, 17 : 1059 - 1084
  • [7] Graphene and non-Abelian quantization
    Falomir, H.
    Gamboa, J.
    Loewe, M.
    Nieto, M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (13)
  • [8] QUANTIZATION BY NON-ABELIAN PROMEASURES
    CLARKE, CJS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (20): : 4463 - 4470
  • [9] On geometric quantization of bm-symplectic manifolds
    Guillemin, Victor W.
    Miranda, Eva
    Weitsman, Jonathan
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 281 - 288
  • [10] Geometric quantization of b-symplectic manifolds
    Braverman, Maxim
    Loizides, Yiannis
    Song, Yanli
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2021, 19 (01) : 1 - 36