On geometric quantization of bm-symplectic manifolds

被引:0
|
作者
Guillemin, Victor W. [1 ]
Miranda, Eva [2 ,3 ]
Weitsman, Jonathan [4 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Politecn Cataluna, Grad Sch Math, Dept Math, Lab Geometry & Dynam Syst,EPSEB,BGSMath Barcelona, Barcelona, Spain
[3] Sorbonne Univ, Observ Paris, IMCCE, CNRS UMR8028,PSL Univ, 77 Ave Denfert Rochereau, F-75014 Paris, France
[4] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
D O I
10.1007/s00209-020-02590-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the formal geometric quantization of b(m)-symplectic manifolds equipped with Hamiltonian actions of a torusTwith nonzero leading modular weight. The resulting virtual T-modules are finite dimensional whenmis odd, as in [4]; whenmis even, these virtual modules are not finite dimensional, and we compute the asymptotics of the representations for large weight.
引用
收藏
页码:281 / 288
页数:8
相关论文
共 50 条
  • [1] Convexity of the moment map image for torus actions on bm-symplectic manifolds
    Guillemin, Victor W.
    Miranda, Eva
    Weitsman, Jonathan
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2131):
  • [2] Geometric Quantization on Kahler and Symplectic Manifolds
    Ma, Xiaonan
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 785 - 810
  • [3] Equivariant Classification of bm-symplectic Surfaces
    Miranda, Eva
    Planas, Arnau
    [J]. REGULAR & CHAOTIC DYNAMICS, 2018, 23 (04): : 355 - 371
  • [4] Equivariant Classification of bm-symplectic Surfaces
    Eva Miranda
    Arnau Planas
    [J]. Regular and Chaotic Dynamics, 2018, 23 : 355 - 371
  • [5] Geometric quantization of b-symplectic manifolds
    Braverman, Maxim
    Loizides, Yiannis
    Song, Yanli
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2021, 19 (01) : 1 - 36
  • [6] On geometric quantization of b-symplectic manifolds
    Guillemin, Victor W.
    Miranda, Eva
    Weitsman, Jonathan
    [J]. ADVANCES IN MATHEMATICS, 2018, 331 : 941 - 951
  • [7] On the geometric quantization of the symplectic leaves of Poisson manifolds
    Vaisman, I
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (03) : 265 - 275
  • [8] Non-Abelian Symplectic Cuts and the Geometric Quantization of Noncompact Manifolds
    Jonathan Weitsman
    [J]. Letters in Mathematical Physics, 2001, 56 : 31 - 40
  • [9] On Quantization of Complex Symplectic Manifolds
    Andrea D’Agnolo
    Masaki Kashiwara
    [J]. Communications in Mathematical Physics, 2011, 308 : 81 - 113
  • [10] On Quantization of Complex Symplectic Manifolds
    D'Agnolo, Andrea
    Kashiwara, Masaki
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (01) : 81 - 113