Equivariant Classification of bm-symplectic Surfaces

被引:11
|
作者
Miranda, Eva [1 ,2 ,3 ]
Planas, Arnau [1 ,2 ]
机构
[1] Univ Politecn Cataluna, Edifici P,Avinguda Doctor Maranon 44-50, E-08028 Barcelona, Spain
[2] UPC, EPSEB, BGSMath Lab Geometry & Dynam Syst, Barcelona Grad Sch Math,Dept Math, Edifici P,Avinguda Doctor Maranon 44-50, E-08028 Barcelona, Spain
[3] PSL Univ, Sorbonne Univ, Observ Paris, IMCCE,CNRS UMR8028, 77 Ave Denfert Rochereau, F-75014 Paris, France
来源
REGULAR & CHAOTIC DYNAMICS | 2018年 / 23卷 / 04期
关键词
Moser path method; singularities; b-symplectic manifolds; group actions; SYMPLECTIC-MANIFOLDS; DEFORMATIONS; GEOMETRY;
D O I
10.1134/S1560354718040019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by Arnold's classification of local Poisson structures [1] in the plane using the hierarchy of singularities of smooth functions, we consider the problem of global classification of Poisson structures on surfaces. Among the wide class of Poisson structures, we consider the class of b(m) -Poisson structures which can be also visualized using differential forms with singularities as b(m) -symplectic structures. In this paper we extend the classification scheme in [24] for b(m) -symplectic surfaces to the equivariant setting. When the compact group is the group of deck-transformations of an orientable covering, this yields the classification of these objects for nonorientable surfaces. The paper also includes recipes to construct b(m) -symplectic structures on surfaces. The feasibility of such constructions depends on orientability and on the colorability of an associated graph. The desingularization technique in [10] is revisited for surfaces and the compatibility with this classification scheme is analyzed in detail.
引用
收藏
页码:355 / 371
页数:17
相关论文
共 50 条
  • [1] Equivariant Classification of bm-symplectic Surfaces
    Eva Miranda
    Arnau Planas
    [J]. Regular and Chaotic Dynamics, 2018, 23 : 355 - 371
  • [2] On geometric quantization of bm-symplectic manifolds
    Guillemin, Victor W.
    Miranda, Eva
    Weitsman, Jonathan
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 281 - 288
  • [3] Convexity of the moment map image for torus actions on bm-symplectic manifolds
    Guillemin, Victor W.
    Miranda, Eva
    Weitsman, Jonathan
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2131):
  • [4] Desingularizing bm-Symplectic Structures (vol 2019, pg 3299, 2018)
    Guillemin, Victor
    Miranda, Eva
    Weitsman, Jonathan
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (10) : 3299 - 3300
  • [5] SYMPLECTIC RATIONAL G-SURFACES AND EQUIVARIANT SYMPLECTIC CONES
    Chen, Weimin
    Li, Tian-Jun
    Wu, Weiwei
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 119 (02) : 221 - 260
  • [6] Classification of Equivariant Star Products on Symplectic Manifolds
    Thorsten Reichert
    Stefan Waldmann
    [J]. Letters in Mathematical Physics, 2016, 106 : 675 - 692
  • [7] Classification of Equivariant Star Products on Symplectic Manifolds
    Reichert, Thorsten
    Waldmann, Stefan
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (05) : 675 - 692
  • [8] Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces
    Beckmann, Thorsten
    Oberdieck, Georg
    [J]. ALGEBRAIC GEOMETRY, 2022, 9 (04): : 400 - 442
  • [9] EQUIVARIANT CONSTRAINED SYMPLECTIC INTEGRATION
    MCLACHLAN, RI
    SCOVEL, C
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1995, 5 (03) : 233 - 256
  • [10] Classification of Invariant Star Products up to Equivariant Morita Equivalence on Symplectic Manifolds
    Jansen, Stefan
    Neumaier, Nikolai
    Schaumann, Gregor
    Waldmann, Stefan
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (02) : 203 - 236