Non-Abelian geometric phases in periodically driven systems

被引:10
|
作者
Novicenko, Viktor [1 ]
Juzeliunas, Gediminas [1 ]
机构
[1] Vilnius Univ, Inst Theoret Phys & Astron, Sauletekio Ave 3, LT-10257 Vilnius, Lithuania
关键词
GAUGE STRUCTURE; ATOMS;
D O I
10.1103/PhysRevA.100.012127
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a periodically driven quantum system described by a Hamiltonian which is the product of a slowly varying Hermitian operator V (lambda(t)) and a dimensionless periodic function with zero average. We demonstrate that the adiabatic evolution of the system within a fully degenerate Floquet band is accompanied by non-Abelian (noncommuting) geometric phases appearing when the slowly varying parameter lambda = lambda(t) completes a closed loop. The geometric phases can have significant values even after completing a single cycle of the slow variable. Furthermore, there are no dynamical phases masking the non-Abelian Floquet geometric phases, as the former average to zero over an oscillation period. This can be used to precisely control the evolution of quantum systems, in particular for performing qubit operations. The general formalism is illustrated by analyzing a spin in an oscillating magnetic field with arbitrary strength and a slowly changing direction.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Detecting non-Abelian geometric phase in circuit QED
    Peng, Man-Lv
    Zhou, Jian
    Xue, Zheng-Yuan
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2739 - 2747
  • [42] Non-Abelian geometric quantum memory with an atomic ensemble
    Li, Y
    Zhang, P
    Zanardi, P
    Sun, CP
    [J]. PHYSICAL REVIEW A, 2004, 70 (03): : 032330 - 1
  • [43] Detecting non-Abelian geometric phase in circuit QED
    Man-Lv Peng
    Jian Zhou
    Zheng-Yuan Xue
    [J]. Quantum Information Processing, 2013, 12 : 2739 - 2747
  • [44] Noncyclic geometric phase and its non-Abelian generalization
    Mostafazadeh, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46): : 8157 - 8171
  • [45] Non-Abelian phases from quantum Zeno dynamics
    Burgarth, Daniel
    Facchi, Paolo
    Giovannetti, Vittorio
    Nakazato, Hiromichi
    Pascazio, Saverio
    Yuasa, Kazuya
    [J]. PHYSICAL REVIEW A, 2013, 88 (04):
  • [46] Topological insulating phases of non-Abelian anyonic chains
    DeGottardi, Wade
    [J]. PHYSICAL REVIEW B, 2014, 90 (07):
  • [47] NON-ABELIAN GEOMETRIC PHASE AND GENERALIZED INVARIANT METHOD
    KWON, O
    AHN, C
    KIM, Y
    [J]. PHYSICAL REVIEW A, 1992, 46 (09): : 5354 - 5357
  • [48] NON-ABELIAN GEOMETRIC EFFECT IN QUANTUM ADIABATIC TRANSITIONS
    JOYE, A
    PFISTER, CE
    [J]. PHYSICAL REVIEW A, 1993, 48 (04): : 2598 - 2608
  • [49] Non-Abelian fermionization and the landscape of quantum Hall phases
    Goldman, Hart
    Sohal, Ramanjit
    Fradkin, Eduardo
    [J]. PHYSICAL REVIEW B, 2020, 102 (19)
  • [50] Maximally non-abelian Toda systems
    Razumov, AV
    Saveliev, MV
    [J]. NUCLEAR PHYSICS B, 1997, 494 (03) : 657 - 686