Maximally non-abelian Toda systems

被引:8
|
作者
Razumov, AV
Saveliev, MV
机构
[1] ECOLE NORMALE SUPER,PHYS THEOR LAB,CNRS,UNITE PROPRE,F-75231 PARIS,FRANCE
[2] UNIV PARIS 11,ORSAY,FRANCE
基金
俄罗斯基础研究基金会;
关键词
non-Abelian Toda systems; Lie algebra; Lie group; gradation; quasideterminant;
D O I
10.1016/S0550-3213(97)00183-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A detailed consideration of the maximally non-abelian Toda systems based on the classical semi-simple Lie groups is given, The explicit expressions for the general solution of the corresponding equations are obtained. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:657 / 686
页数:30
相关论文
共 50 条
  • [1] W-algebras for non-abelian Toda systems
    Nirov, KS
    Razumov, AV
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2003, 48 (04) : 505 - 545
  • [2] THE GENERALIZED NON-ABELIAN TODA LATTICE
    POPOWICZ, Z
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1983, 19 (01): : 79 - 81
  • [3] THE NON-ABELIAN SOLITONS FOR THE SL(2,C) NON-ABELIAN TODA LATTICE
    POPOWICZ, Z
    [J]. INVERSE PROBLEMS, 1987, 3 (02) : 329 - 340
  • [4] Algebraic structure of the non-abelian Toda models
    Gomes, JF
    Da Silveira, FEM
    Zimerman, AH
    Sotkov, GM
    [J]. NONASSOCIATIVE ALGEBRA AND ITS APPLICATIONS, 2000, 211 : 125 - 136
  • [5] Hamiltonian structure of non-Abelian Toda lattice
    Gekhtman, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1998, 46 (03) : 189 - 205
  • [6] More non-Abelian loop Toda solitons
    Nirov, Kh S.
    Razumov, A. V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (28)
  • [7] Hamiltonian Structure of Non-Abelian Toda Lattice
    M. Gekhtman
    [J]. Letters in Mathematical Physics, 1998, 46 : 189 - 205
  • [8] Solving non-Abelian loop Toda equations
    Nirov, Kh. S.
    Razumov, A. V.
    [J]. NUCLEAR PHYSICS B, 2009, 815 (03) : 404 - 429
  • [9] SOLVABLE SYSTEMS OF WAVE-EQUATIONS AND NON-ABELIAN TODA-LATTICES
    BOMBELLI, L
    COUCH, WE
    TORRENCE, RJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05): : 1309 - 1327
  • [10] Generalized non-abelian Toda models of dyonic type
    Gomes, JF
    Sotkov, GM
    Zimerman, AH
    [J]. GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 315 - 318