FITZHUGH-NAGUMO SYSTEM WITH ZERO MASS AND CRITICAL GROWTH

被引:1
|
作者
Figueiredo, Giovany [1 ]
Montenegro, Marcelo [2 ]
机构
[1] Univ Brasaia, Dept Matemet, Campus Darcy Ribeiro 01, BR-70910900 Brasilia, DF, Brazil
[2] Univ Estadual Campinas, Dept Matemdt, IMECC, Rua Sergio Baarque Rolando 651, BR-13083859 Campinas, Brazil
关键词
NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; LAPLACIAN EQUATION; POSITIVE SOLUTIONS; ELLIPTIC-SYSTEMS; STANDING WAVES; R-N; EXISTENCE; CALCULUS;
D O I
10.1007/s11856-021-2224-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show existence of a nontrivial nonnegative solution for the system -Delta u=K(x)f(u)+gamma vertical bar u vertical bar(2*) -2u - v, -Delta v = u - v in Double-struck capital R-N. Since the function f can verify f '(0)=0, this type of system is known in the literature as zero mass. We analyze three types of problems with K being periodic, asymptotically periodic and with a vanishing property at infinity. In the first place we consider N >= 3, and we prove existence results considering the function f with polynomial growth which can be subcritical, corresponding to gamma = 0, or critical, in case gamma = 1. Finally, we consider specifically N = 2 with gamma = 0 and f with possible critical exponential behavior.
引用
收藏
页码:711 / 733
页数:23
相关论文
共 50 条
  • [1] FitzHugh-Nagumo system with zero mass and critical growth
    Giovany Figueiredo
    Marcelo Montenegro
    Israel Journal of Mathematics, 2021, 245 : 711 - 733
  • [2] Zero-Hopf bifurcation in the FitzHugh-Nagumo system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    Vidal, Claudio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4289 - 4299
  • [3] FITZHUGH-NAGUMO EQUATIONS ARE A GRADIENT SYSTEM
    MORNEV, OA
    PANFILOV, AV
    ALIEV, RR
    BIOFIZIKA, 1992, 37 (01): : 123 - 125
  • [4] Clustered spots in the FitzHugh-Nagumo system
    Wei, JC
    Winter, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (01) : 121 - 145
  • [5] Lateral overdetermination of the FitzHugh-Nagumo system
    Cox, S
    Wagner, A
    INVERSE PROBLEMS, 2004, 20 (05) : 1639 - 1647
  • [6] The stabilization of coupled FitzHugh-Nagumo system
    Yu, Xin
    Wang, Renzhi
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 875 - 877
  • [7] Bifurcations of FitzHugh-Nagumo (FHN) System
    Ongay Larios, Fernando
    Agueero Granados, Maximo Augusto
    CIENCIA ERGO-SUM, 2010, 17 (03) : 295 - 306
  • [8] Local bifurcation for the FitzHugh-Nagumo system
    Rocsoreanu, C
    Sterpu, M
    ANALYSIS AND OPTIMIZATION OF DIFFERENTIAL SYSTEMS, 2003, 121 : 345 - 356
  • [9] The modified FitzHugh-Nagumo system as an oscillator
    Rabinovitch, A.
    Friedman, M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (03) : 371 - 378
  • [10] Analysis of the stochastic FitzHugh-Nagumo system
    Bonaccorsi, Stefano
    Mastrogiacomo, Elisa
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (03) : 427 - 446