FITZHUGH-NAGUMO SYSTEM WITH ZERO MASS AND CRITICAL GROWTH

被引:1
|
作者
Figueiredo, Giovany [1 ]
Montenegro, Marcelo [2 ]
机构
[1] Univ Brasaia, Dept Matemet, Campus Darcy Ribeiro 01, BR-70910900 Brasilia, DF, Brazil
[2] Univ Estadual Campinas, Dept Matemdt, IMECC, Rua Sergio Baarque Rolando 651, BR-13083859 Campinas, Brazil
关键词
NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; LAPLACIAN EQUATION; POSITIVE SOLUTIONS; ELLIPTIC-SYSTEMS; STANDING WAVES; R-N; EXISTENCE; CALCULUS;
D O I
10.1007/s11856-021-2224-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show existence of a nontrivial nonnegative solution for the system -Delta u=K(x)f(u)+gamma vertical bar u vertical bar(2*) -2u - v, -Delta v = u - v in Double-struck capital R-N. Since the function f can verify f '(0)=0, this type of system is known in the literature as zero mass. We analyze three types of problems with K being periodic, asymptotically periodic and with a vanishing property at infinity. In the first place we consider N >= 3, and we prove existence results considering the function f with polynomial growth which can be subcritical, corresponding to gamma = 0, or critical, in case gamma = 1. Finally, we consider specifically N = 2 with gamma = 0 and f with possible critical exponential behavior.
引用
收藏
页码:711 / 733
页数:23
相关论文
共 50 条
  • [31] Dynamical behaviors in the FitzHugh-Nagumo system with a memory trace
    Yuan, Guoyong
    Liu, Jun
    Wang, Shuijing
    Yang, Shiping
    Wang, Guangrui
    Zhang, Hongmei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (25):
  • [32] Bubbles and droplets in a singular limit of the FitzHugh-Nagumo system
    Chen, Chao-Nien
    Choi, Yung-Sze
    Ren, Xiaofeng
    INTERFACES AND FREE BOUNDARIES, 2018, 20 (02) : 165 - 210
  • [33] FAST PULSES WITH OSCILLATORY TAILS IN THE FITZHUGH-NAGUMO SYSTEM
    Carter, Paul
    Sandstede, Bjoern
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (05) : 3393 - 3441
  • [34] A note on the uniqueness of the closed orbit of the Fitzhugh-Nagumo system
    Hayashi, M
    QUARTERLY OF APPLIED MATHEMATICS, 2000, 58 (01) : 171 - 176
  • [35] Existence of solutions for critical Fractional FitzHugh-Nagumo type systems
    Torres Ledesma, Cesar E.
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (08) : 1617 - 1640
  • [36] Minimal lamellar structures in a periodic FitzHugh-Nagumo system
    Acerbi, Emilio
    Chen, Chao-Nien
    Choi, Yung-Sze
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194
  • [37] Traveling waves for the FitzHugh-Nagumo system on an infinite channel
    Chen, Chao-Nien
    Chen, Chiun-Chuan
    Huang, Chih-Chiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 3010 - 3041
  • [38] CHAOTIC MEANDER OF SPIRAL WAVES IN THE FITZHUGH-NAGUMO SYSTEM
    ZHANG, H
    HOLDEN, AV
    CHAOS SOLITONS & FRACTALS, 1995, 5 (3-4) : 661 - 670
  • [39] Multipeak solutions for an elliptic system of Fitzhugh-Nagumo type
    Dancer, E. N.
    Yan, Shusen
    MATHEMATISCHE ANNALEN, 2006, 335 (03) : 527 - 569
  • [40] Existence of Nonoscillatory Solutions of the Discrete FitzHugh-Nagumo System
    Pedro, Ana
    Lima, Pedro
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS, 2013, 47 : 551 - 559