FAST PULSES WITH OSCILLATORY TAILS IN THE FITZHUGH-NAGUMO SYSTEM

被引:39
|
作者
Carter, Paul [1 ]
Sandstede, Bjoern [2 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
singular perturbation theory; traveling waves; FitzHugh-Nagumo; blow-up; exchange lemma; SINGULAR PERTURBATION-THEORY; STABILITY; EQUATIONS; WAVES; EXISTENCE; ORBITS;
D O I
10.1137/140999177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical studies indicate that the FitzHugh-Nagumo system exhibits stable traveling pulses with oscillatory tails. In this paper, the existence of such pulses is proved analytically in the singular perturbation limit near parameter values where the FitzHugh-Nagumo system exhibits folds. In addition, the stability of these pulses is investigated numerically, and a mechanism is proposed that explains the transition from single to double pulses that was observed in earlier numerical studies. The existence proof utilizes geometric blow-up techniques combined with the exchange lemma: the main challenge is to understand the passage near two fold points on the slow manifold where normal hyperbolicity fails.
引用
收藏
页码:3393 / 3441
页数:49
相关论文
共 50 条
  • [1] Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh-Nagumo System
    Carter, Paul
    de Rijk, Bjorn
    Sandstede, Bjorn
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (05) : 1369 - 1444
  • [2] Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh–Nagumo System
    Paul Carter
    Björn de Rijk
    Björn Sandstede
    [J]. Journal of Nonlinear Science, 2016, 26 : 1369 - 1444
  • [3] Oscillatory pulses in FitzHugh-Nagumo type systems with cross-diffusion
    Zemskov, E. P.
    Epstein, I. R.
    Muntean, A.
    [J]. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2011, 28 (02): : 217 - 226
  • [4] LOW AMPLITUDE FITZHUGH-NAGUMO NERVE PULSES
    LUZADER, S
    [J]. JOURNAL OF THEORETICAL NEUROBIOLOGY, 1985, 4 (02): : 83 - 93
  • [5] Traveling pulses in a coupled FitzHugh-Nagumo equation
    Shen, Jianhe
    Zhang, Xiang
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2021, 418
  • [6] Fast and slow waves in the FitzHugh-Nagumo equation
    Krupa, M
    Sandstede, B
    Szmolyan, P
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (01) : 49 - 97
  • [7] FITZHUGH-NAGUMO EQUATIONS ARE A GRADIENT SYSTEM
    MORNEV, OA
    PANFILOV, AV
    ALIEV, RR
    [J]. BIOFIZIKA, 1992, 37 (01): : 123 - 125
  • [8] INTERACTION OF PULSES IN DISSIPATIVE SYSTEMS - FITZHUGH-NAGUMO EQUATIONS
    YAMADA, H
    NOZAKI, K
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (05): : 801 - 809
  • [9] Clustered spots in the FitzHugh-Nagumo system
    Wei, JC
    Winter, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (01) : 121 - 145
  • [10] Lateral overdetermination of the FitzHugh-Nagumo system
    Cox, S
    Wagner, A
    [J]. INVERSE PROBLEMS, 2004, 20 (05) : 1639 - 1647