FITZHUGH-NAGUMO SYSTEM WITH ZERO MASS AND CRITICAL GROWTH

被引:1
|
作者
Figueiredo, Giovany [1 ]
Montenegro, Marcelo [2 ]
机构
[1] Univ Brasaia, Dept Matemet, Campus Darcy Ribeiro 01, BR-70910900 Brasilia, DF, Brazil
[2] Univ Estadual Campinas, Dept Matemdt, IMECC, Rua Sergio Baarque Rolando 651, BR-13083859 Campinas, Brazil
关键词
NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; LAPLACIAN EQUATION; POSITIVE SOLUTIONS; ELLIPTIC-SYSTEMS; STANDING WAVES; R-N; EXISTENCE; CALCULUS;
D O I
10.1007/s11856-021-2224-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show existence of a nontrivial nonnegative solution for the system -Delta u=K(x)f(u)+gamma vertical bar u vertical bar(2*) -2u - v, -Delta v = u - v in Double-struck capital R-N. Since the function f can verify f '(0)=0, this type of system is known in the literature as zero mass. We analyze three types of problems with K being periodic, asymptotically periodic and with a vanishing property at infinity. In the first place we consider N >= 3, and we prove existence results considering the function f with polynomial growth which can be subcritical, corresponding to gamma = 0, or critical, in case gamma = 1. Finally, we consider specifically N = 2 with gamma = 0 and f with possible critical exponential behavior.
引用
收藏
页码:711 / 733
页数:23
相关论文
共 50 条
  • [41] Peak Solutions for an Elliptic System of FitzHugh-Nagumo Type
    Dancer, Edward Norman
    Yan, Shusen
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2003, 2 (04) : 679 - 709
  • [42] On the bifurcation curve for an elliptic system of FitzHugh-Nagumo type
    Sweers, G
    Troy, WC
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 177 (1-4) : 1 - 22
  • [43] STABILITY OF PULSE SOLUTIONS FOR THE DISCRETE FITZHUGH-NAGUMO SYSTEM
    Hupkes, H. J.
    Sandstede, B.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (01) : 251 - 301
  • [44] A NUMERICAL VERIFICATION METHOD FOR A SYSTEM OF FITZHUGH-NAGUMO TYPE
    Cai, Shuting
    Nagatou, Kaori
    Watanabe, Yoshitaka
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (10) : 1195 - 1220
  • [45] Traveling Pulse Solutions for the Discrete FitzHugh-Nagumo System
    Hupkes, Hermen Jan
    Sandstede, Bjoern
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03): : 827 - 882
  • [46] Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise
    D. Valenti
    G. Augello
    B. Spagnolo
    The European Physical Journal B, 2008, 65 : 443 - 451
  • [47] Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise
    Valenti, D.
    Augello, G.
    Spagnolo, B.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 65 (03): : 443 - 451
  • [48] Types of bifurcations of FitzHugh-Nagumo maps
    Duarte, J
    Silva, L
    Ramos, JS
    NONLINEAR DYNAMICS, 2006, 44 (1-4) : 231 - 242
  • [49] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [50] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202