FITZHUGH-NAGUMO SYSTEM WITH ZERO MASS AND CRITICAL GROWTH

被引:1
|
作者
Figueiredo, Giovany [1 ]
Montenegro, Marcelo [2 ]
机构
[1] Univ Brasaia, Dept Matemet, Campus Darcy Ribeiro 01, BR-70910900 Brasilia, DF, Brazil
[2] Univ Estadual Campinas, Dept Matemdt, IMECC, Rua Sergio Baarque Rolando 651, BR-13083859 Campinas, Brazil
关键词
NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; LAPLACIAN EQUATION; POSITIVE SOLUTIONS; ELLIPTIC-SYSTEMS; STANDING WAVES; R-N; EXISTENCE; CALCULUS;
D O I
10.1007/s11856-021-2224-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show existence of a nontrivial nonnegative solution for the system -Delta u=K(x)f(u)+gamma vertical bar u vertical bar(2*) -2u - v, -Delta v = u - v in Double-struck capital R-N. Since the function f can verify f '(0)=0, this type of system is known in the literature as zero mass. We analyze three types of problems with K being periodic, asymptotically periodic and with a vanishing property at infinity. In the first place we consider N >= 3, and we prove existence results considering the function f with polynomial growth which can be subcritical, corresponding to gamma = 0, or critical, in case gamma = 1. Finally, we consider specifically N = 2 with gamma = 0 and f with possible critical exponential behavior.
引用
收藏
页码:711 / 733
页数:23
相关论文
共 50 条
  • [21] Unpeeling a Homoclinic Banana in the FitzHugh-Nagumo System
    Carter, Paul
    Sandstede, Bjorn
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 236 - 349
  • [22] Coherence resonance in a Fitzhugh-Nagumo electronic system
    Brugioni, Stefano
    Hwang, Dong U. K.
    Meucci, Riccardo
    Boccaletti, Stefano
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (10): : 3431 - 3436
  • [23] MICROCONTROLLER BASED MODEL OF FITZHUGH-NAGUMO SYSTEM
    Petrovas, Andrius
    Lisauskas, Saulius
    Slepikas, Alvydas
    ELECTRICAL AND CONTROL TECHNOLOGIES, 2012, : 78 - +
  • [24] Fluidic FitzHugh-Nagumo oscillator
    Fromm, Matthias
    Grundmann, Sven
    Seifert, Avraham
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [25] Viscoelastic Fitzhugh-Nagumo models
    Bini, D
    Cherubini, C
    Filippi, S
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [26] A generalized Fitzhugh-Nagumo equation
    Browne, P.
    Momoniat, E.
    Mahomed, F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 1006 - 1015
  • [27] Coexisting firing analysis in a FitzHugh-Nagumo neuron system
    Shi, Wei
    Min, Fuhong
    Zhu, Jie
    NONLINEAR DYNAMICS, 2024, 112 (14) : 12469 - 12484
  • [29] An inverse problem for a generalized FitzHugh-Nagumo type system
    Cardoulis, Laure
    Cristofol, Michel
    APPLICABLE ANALYSIS, 2024, 103 (11) : 1990 - 2002
  • [30] Multipeak solutions for an elliptic system of Fitzhugh-Nagumo type
    E.N. Dancer
    Shusen Yan
    Mathematische Annalen, 2006, 335