Zero-Hopf bifurcation in the FitzHugh-Nagumo system

被引:8
|
作者
Euzebio, Rodrigo D. [1 ,2 ]
Llibre, Jaume [2 ]
Vidal, Claudio [3 ]
机构
[1] UNESP, IBILCE, Dept Matemat, BR-1505400 Sao Jose De Rio Preto, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Bio Bio, Dept Matemat, Concepcion, Chile
基金
巴西圣保罗研究基金会;
关键词
FitzHugh-Nagumo system; periodic orbit; averaging theory; zero-Hopf bifurcation; ANALYTIC UNFOLDINGS; ORBITS; SINGULARITY; IMPULSES; EQUATION;
D O I
10.1002/mma.3365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the values of the parameters for which a zero-Hopf equilibrium point takes place at the singular points, namely, O (the origin), P+, and P- in the FitzHugh-Nagumo system. We find two two-parameter families of the FitzHugh-Nagumo system for which the equilibrium point at the origin is a zero-Hopf equilibrium. For these two families, we prove the existence of a periodic orbit bifurcating from the zero-Hopf equilibrium point O. We prove that there exist three two-parameter families of the FitzHugh-Nagumo system for which the equilibrium point at P+ and at P- is a zero-Hopf equilibrium point. For one of these families, we prove the existence of one, two, or three periodic orbits starting at P+ and P-. Copyright (C) 2014 JohnWiley & Sons, Ltd.
引用
收藏
页码:4289 / 4299
页数:11
相关论文
共 50 条
  • [1] Local bifurcation for the FitzHugh-Nagumo system
    Rocsoreanu, C
    Sterpu, M
    [J]. ANALYSIS AND OPTIMIZATION OF DIFFERENTIAL SYSTEMS, 2003, 121 : 345 - 356
  • [2] Hopf Bifurcation for a FitzHugh-Nagumo Model with Time Delay in a Network
    Wang, Suxia
    [J]. COMPLEXITY, 2021, 2021
  • [3] Bifurcation and chaos in discrete FitzHugh-Nagumo system
    Jing, ZJ
    Chang, Y
    Guo, BL
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 21 (03) : 701 - 720
  • [4] Stability Switches and Hopf Bifurcation in a Coupled FitzHugh-Nagumo Neural System with Multiple Delays
    Yao, Shengwei
    Tu, Huonian
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] Zero-Hopf bifurcation in a Chua system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 31 - 40
  • [6] On the bifurcation curve for an elliptic system of FitzHugh-Nagumo type
    Sweers, G
    Troy, WC
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 177 (1-4) : 1 - 22
  • [7] FOLD-HOPF BIFURCATION ANALYSIS FOR A COUPLED FITZHUGH-NAGUMO NEURAL SYSTEM WITH TIME DELAY
    Zhen, Bin
    Xu, Jian
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (12): : 3919 - 3934
  • [8] Zero-Hopf Bifurcation
    Liebscher, Stefan
    [J]. BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 103 - 108
  • [9] Zero-Hopf bifurcation in a hyperchaotic Lorenz system
    Cid-Montiel, Lorena
    Llibre, Jaume
    Stoica, Cristina
    [J]. NONLINEAR DYNAMICS, 2014, 75 (03) : 561 - 566
  • [10] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua's system
    Li, Junze
    Liu, Yebei
    Wei, Zhouchao
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,