Zero-Hopf bifurcation in a Chua system

被引:18
|
作者
Euzebio, Rodrigo D. [1 ,2 ]
Llibre, Jaume [2 ]
机构
[1] UNESP, IBILCE, Dept Matemat, Rua Cristovao Colombo 2265, BR-1505400 Sao Jose De Rio Preto, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
基金
巴西圣保罗研究基金会;
关键词
Chua system; Periodic orbit; Averaging theory; Zero Hopf bifurcation; ANALYTIC UNFOLDINGS; SINGULARITY; CIRCUIT; SYNCHRONIZATION; DEGENERACIES; EQUATION; ORBITS; CHAOS;
D O I
10.1016/j.nonrwa.2017.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are +/- wi, not equal 0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 50 条
  • [1] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua's system
    Li, Junze
    Liu, Yebei
    Wei, Zhouchao
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [2] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system
    Junze Li
    Yebei Liu
    Zhouchao Wei
    [J]. Advances in Difference Equations, 2018
  • [3] Algebraic Analysis of Zero-Hopf Bifurcation in a Chua System
    Huang, Bo
    Niu, Wei
    Xie, Shaofen
    [J]. SYMMETRY-BASEL, 2022, 14 (05):
  • [4] Zero-Hopf bifurcation in the Chua's circuit
    Ginoux, Jean-Marc
    Llibre, Jaume
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [5] Zero-Hopf Bifurcation
    Liebscher, Stefan
    [J]. BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 103 - 108
  • [6] Zero-Hopf bifurcation in a hyperchaotic Lorenz system
    Cid-Montiel, Lorena
    Llibre, Jaume
    Stoica, Cristina
    [J]. NONLINEAR DYNAMICS, 2014, 75 (03) : 561 - 566
  • [7] Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System
    Husien, Ahmad Muhamad
    Amen, Azad Ibrahim
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):
  • [8] Integrability and zero-Hopf bifurcation in the Sprott A system
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 162
  • [9] Zero-Hopf bifurcation in the generalized Michelson system
    Llibre, Jaume
    Makhlouf, Amar
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 89 : 228 - 231
  • [10] ZERO-HOPF BIFURCATION IN NUCLEAR SPIN GENERATOR SYSTEM
    Shi, Renxiang
    Yu, Jiang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 23 - 31