Zero-Hopf bifurcation in a Chua system

被引:18
|
作者
Euzebio, Rodrigo D. [1 ,2 ]
Llibre, Jaume [2 ]
机构
[1] UNESP, IBILCE, Dept Matemat, Rua Cristovao Colombo 2265, BR-1505400 Sao Jose De Rio Preto, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
基金
巴西圣保罗研究基金会;
关键词
Chua system; Periodic orbit; Averaging theory; Zero Hopf bifurcation; ANALYTIC UNFOLDINGS; SINGULARITY; CIRCUIT; SYNCHRONIZATION; DEGENERACIES; EQUATION; ORBITS; CHAOS;
D O I
10.1016/j.nonrwa.2017.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are +/- wi, not equal 0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 50 条
  • [31] Zero-Hopf bifurcation analysis in delayed differential equations with two delays
    Wu, Xiaoqin P.
    Wang, Liancheng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (03): : 1484 - 1513
  • [32] Zero-Hopf bifurcation analysis in an inertial two-neural system with delayed Crespi function
    Yingying Li
    Li Xiao
    Zhouchao Wei
    Wei Zhang
    [J]. The European Physical Journal Special Topics, 2020, 229 : 953 - 962
  • [33] Zero-Hopf bifurcation analysis in an inertial two-neural system with delayed Crespi function
    Li, Yingying
    Xiao, Li
    Wei, Zhouchao
    Zhang, Wei
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (6-7): : 953 - 962
  • [34] Zero-Hopf bifurcation for van der Pol's oscillator with delayed feedback
    Wu, Xiaoqin
    Wang, Liancheng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2586 - 2602
  • [35] Zero-Hopf bifurcation in continuous dynamical systems using multiple scale approach
    Al-khedhairi, A.
    Askar, S. S.
    Elsonbaty, A.
    Elsadany, A. A.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2020, 11 (04) : 1377 - 1385
  • [36] The Integrability and the Zero-Hopf Bifurcation of the Three Dimensional Lotka-Volterra Systems
    Salih, Rizgar H.
    [J]. 6TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017), 2018, 1926
  • [37] Zero-Hopf Periodic Orbits for a Rossler Differential System
    Llibre, Jaume
    Makhlouf, Ammar
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [38] On the Zero-Hopf Bifurcation of the Lotka-Volterra Systems in R3
    Han, Maoan
    Llibre, Jaume
    Tian, Yun
    [J]. MATHEMATICS, 2020, 8 (07)
  • [39] Zero-Hopf Bifurcation of a memristive synaptic Hopfield neural network with time delay
    Dong, Tao
    Gong, Xiaomei
    Huang, Tingwen
    [J]. NEURAL NETWORKS, 2022, 149 : 146 - 156
  • [40] Zero-Hopf bifurcation in the Van der Pol oscillator with delayed position and velocity feedback
    Bramburger, Jason
    Dionne, Benoit
    LeBlanc, Victor G.
    [J]. NONLINEAR DYNAMICS, 2014, 78 (04) : 2959 - 2973