Zero-Hopf bifurcation in a Chua system

被引:18
|
作者
Euzebio, Rodrigo D. [1 ,2 ]
Llibre, Jaume [2 ]
机构
[1] UNESP, IBILCE, Dept Matemat, Rua Cristovao Colombo 2265, BR-1505400 Sao Jose De Rio Preto, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
基金
巴西圣保罗研究基金会;
关键词
Chua system; Periodic orbit; Averaging theory; Zero Hopf bifurcation; ANALYTIC UNFOLDINGS; SINGULARITY; CIRCUIT; SYNCHRONIZATION; DEGENERACIES; EQUATION; ORBITS; CHAOS;
D O I
10.1016/j.nonrwa.2017.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are +/- wi, not equal 0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 50 条
  • [21] Hopf and zero-Hopf bifurcations in the Hindmarsh–Rose system
    Claudio Buzzi
    Jaume Llibre
    João Medrado
    [J]. Nonlinear Dynamics, 2016, 83 : 1549 - 1556
  • [22] Dynamics at Infinity, Degenerate Hopf and Zero-Hopf Bifurcation for Kingni-Jafari System with Hidden Attractors
    Wei, Zhouchao
    Moroz, Irene
    Wang, Zhen
    Sprott, Julien Clinton
    Kapitaniak, Tomasz
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (07):
  • [23] Zero-Hopf bifurcation of limit cycles in certain differential systems
    Huang, Bo
    Wang, Dongming
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 195
  • [24] Analysis and stabilization of nonlinear systems with a zero-Hopf control bifurcation
    Hamzi, B
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 3912 - 3917
  • [25] ZERO-HOPF BIFURCATION FOR A CLASS OF LORENZ-TYPE SYSTEMS
    Llibre, Jaume
    Perez-Chavela, Ernesto
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (06): : 1731 - 1736
  • [26] Zero-Hopf bifurcation of a cubic jerk system via the third order averaging method
    Chen, Yu-Ming
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [27] Hopf and zero-Hopf bifurcations in the Hindmarsh-Rose system
    Buzzi, Claudio
    Llibre, Jaume
    Medrado, Joao
    [J]. NONLINEAR DYNAMICS, 2016, 83 (03) : 1549 - 1556
  • [28] Zero-Hopf bifurcation in the Volterra-Gause system of predator-prey type
    Ginoux, Jean-Marc
    Llibre, Jaume
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7858 - 7866
  • [29] Transcritical and zero-Hopf bifurcations in the Genesio system
    Cardin, Pedro Toniol
    Llibre, Jaume
    [J]. NONLINEAR DYNAMICS, 2017, 88 (01) : 547 - 553
  • [30] Transcritical and zero-Hopf bifurcations in the Genesio system
    Pedro Toniol Cardin
    Jaume Llibre
    [J]. Nonlinear Dynamics, 2017, 88 : 547 - 553