Transcritical and zero-Hopf bifurcations in the Genesio system

被引:0
|
作者
Pedro Toniol Cardin
Jaume Llibre
机构
[1] Universidade Estadual Paulista (UNESP),Departamento de Matemática, Faculdade de Engenharia de Ilha Solteira
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
Nonlinear Dynamics | 2017年 / 88卷
关键词
Genesio system; Transcritical bifurcation; Zero-Hopf Bifurcation; Averaging theory; 34C23; 34C25; 37G10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛+ax¨+bx˙+cx-x2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dddot{x}} + a {\ddot{x}} + b {\dot{x}} + c x - x^2 = 0$$\end{document}, called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0$$\end{document} and the parameters (a, b) are in the set {(a,b)∈R2:b≠0}\{(0,b)∈R2:b>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{(a,b) \in \mathbb {R}^2 : b \ne 0\} {\setminus } \{(0,b) \in \mathbb {R}^2 : b > 0\}$$\end{document}, and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a=c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=c=0$$\end{document} and b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document}.
引用
收藏
页码:547 / 553
页数:6
相关论文
共 50 条
  • [1] Transcritical and zero-Hopf bifurcations in the Genesio system
    Cardin, Pedro Toniol
    Llibre, Jaume
    NONLINEAR DYNAMICS, 2017, 88 (01) : 547 - 553
  • [2] Hopf and zero-Hopf bifurcations in the Hindmarsh–Rose system
    Claudio Buzzi
    Jaume Llibre
    João Medrado
    Nonlinear Dynamics, 2016, 83 : 1549 - 1556
  • [3] Hopf and zero-Hopf bifurcations in the Hindmarsh-Rose system
    Buzzi, Claudio
    Llibre, Jaume
    Medrado, Joao
    NONLINEAR DYNAMICS, 2016, 83 (03) : 1549 - 1556
  • [4] Zero-Hopf Bifurcation in a Generalized Genesio Differential Equation
    Diab, Zouhair
    Guirao, Juan L. G.
    Vera, Juan A.
    MATHEMATICS, 2021, 9 (04) : 1 - 11
  • [5] The zero-Hopf bifurcations of a four-dimensional hyperchaotic system
    Llibre, Jaume
    Tian, Yuzhou
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
  • [6] Zero-Hopf Bifurcations of 3D Quadratic Jerk System
    Sang, Bo
    Huang, Bo
    MATHEMATICS, 2020, 8 (09)
  • [7] ZERO-HOPF BIFURCATIONS AND CHAOS OF QUADRATIC JERK SYSTEMS
    Sang, Bo
    Salih, Rizgar
    Wang, Ning
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, 2020
  • [8] Zero-Hopf bifurcations in Yu-Wang type systems
    Bengochea, Abimael
    Garcia-Chung, Angel
    Perez-Chavela, Ernesto
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (03): : 413 - 421
  • [9] Zero-Hopf bifurcation in a Chua system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 31 - 40
  • [10] Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System
    Husien, Ahmad Muhamad
    Amen, Azad Ibrahim
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):