Zero-Hopf bifurcation in the generalized Michelson system

被引:13
|
作者
Llibre, Jaume [1 ]
Makhlouf, Amar [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Annaba, Lab LMA, Dept Math, Elhadjar 23, Annaba, Algeria
关键词
Periodic solution; Averaging theory; Zero-Hopf Bifurcation; Michelson system; Triple-zero bifurcation; ANALYTIC UNFOLDINGS; SINGULARITY;
D O I
10.1016/j.chaos.2015.11.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide sufficient conditions for the existence of two periodic solutions bifurcating from a zero-Hopf equilibrium for the differential system (x) over dot = y, (y) over dot = z , (z) over dot = a+by+cz -x(2)/2, where a, b and c are real arbitrary parameters. The regular perturbation of this differential system provides the normal form of the so-called triple-zero bifurcation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:228 / 231
页数:4
相关论文
共 50 条
  • [1] Zero-Hopf bifurcation in a Chua system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 31 - 40
  • [2] Zero-Hopf bifurcation in the generalized Hiemenz equation
    Uribe, Marco
    Martinez, Elisa
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8565 - 8576
  • [3] Zero-Hopf Bifurcation
    Liebscher, Stefan
    [J]. BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 103 - 108
  • [4] Zero-Hopf bifurcation in a hyperchaotic Lorenz system
    Cid-Montiel, Lorena
    Llibre, Jaume
    Stoica, Cristina
    [J]. NONLINEAR DYNAMICS, 2014, 75 (03) : 561 - 566
  • [5] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua's system
    Li, Junze
    Liu, Yebei
    Wei, Zhouchao
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [6] Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System
    Husien, Ahmad Muhamad
    Amen, Azad Ibrahim
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):
  • [7] Zero-Hopf Bifurcation in a Generalized Genesio Differential Equation
    Diab, Zouhair
    Guirao, Juan L. G.
    Vera, Juan A.
    [J]. MATHEMATICS, 2021, 9 (04) : 1 - 11
  • [8] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system
    Junze Li
    Yebei Liu
    Zhouchao Wei
    [J]. Advances in Difference Equations, 2018
  • [9] Integrability and zero-Hopf bifurcation in the Sprott A system
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 162
  • [10] On the Hopf-zero bifurcation of the Michelson system
    Llibre, Jaume
    Zhang, Xiang
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (03) : 1650 - 1653