Zero-Hopf bifurcation in the Chua's circuit

被引:1
|
作者
Ginoux, Jean-Marc [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Toulon & Var, CNRS, UMR 7296, Lab LSIS, BP 20132, F-20132 La Garde, France
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
基金
欧盟地平线“2020”;
关键词
PERIODIC-ORBITS;
D O I
10.1063/5.0137020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An equilibrium point of a differential system in R-3 such that the eigenvalues of the Jacobian matrix of the system at the equilibrium are 0 and +/- omega i with omega > 0 is called a zero-Hopf equilibrium point. First, we prove that the Chua's circuit can have three zero-Hopf equilibria varying its three parameters. Later, we show that from the zero-Hopf equilibrium point localized at the origin of coordinates can bifurcate one periodic orbit. Moreover, we provide an analytic estimation of the expression of this periodic orbit and we have determined the kind of the stability of the periodic orbit in function of the parameters of the perturbation. The tool used for proving these results is the averaging theory of second order. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua's system
    Li, Junze
    Liu, Yebei
    Wei, Zhouchao
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [2] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system
    Junze Li
    Yebei Liu
    Zhouchao Wei
    [J]. Advances in Difference Equations, 2018
  • [3] Zero-Hopf bifurcation in a Chua system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 31 - 40
  • [4] Algebraic Analysis of Zero-Hopf Bifurcation in a Chua System
    Huang, Bo
    Niu, Wei
    Xie, Shaofen
    [J]. SYMMETRY-BASEL, 2022, 14 (05):
  • [5] Zero-Hopf Bifurcation
    Liebscher, Stefan
    [J]. BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 103 - 108
  • [6] Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System
    Husien, Ahmad Muhamad
    Amen, Azad Ibrahim
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):
  • [7] Zero-Hopf bifurcation in a hyperchaotic Lorenz system
    Cid-Montiel, Lorena
    Llibre, Jaume
    Stoica, Cristina
    [J]. NONLINEAR DYNAMICS, 2014, 75 (03) : 561 - 566
  • [8] A Generalist Predator and the Planar Zero-Hopf Bifurcation
    Miguel Valenzuela, Luis
    Falconi, Manuel
    Ble, Gamaliel
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03):
  • [9] Integrability and zero-Hopf bifurcation in the Sprott A system
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 162
  • [10] Zero-Hopf bifurcation in the generalized Michelson system
    Llibre, Jaume
    Makhlouf, Amar
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 89 : 228 - 231