The modified FitzHugh-Nagumo system as an oscillator

被引:0
|
作者
Rabinovitch, A. [1 ]
Friedman, M. [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Informat Syst Engn, IL-84105 Beer Sheva, Israel
关键词
modified FitzHugh-Nagumo; action potential; limit cycle; oscillator; ACTION-POTENTIAL PROPAGATION; MODEL; ORGAN; CELL;
D O I
10.1002/mma.1048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The use of the modified FitzHugh-Nagumo system is extended to the limit cycle regime. Ranges of parameters for which such oscillatory behavior prevails are calculated and properties of phase space and individual pulses are obtained. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:371 / 378
页数:8
相关论文
共 50 条
  • [1] FITZHUGH-NAGUMO EQUATIONS ARE A GRADIENT SYSTEM
    MORNEV, OA
    PANFILOV, AV
    ALIEV, RR
    [J]. BIOFIZIKA, 1992, 37 (01): : 123 - 125
  • [2] Clustered spots in the FitzHugh-Nagumo system
    Wei, JC
    Winter, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (01) : 121 - 145
  • [3] Lateral overdetermination of the FitzHugh-Nagumo system
    Cox, S
    Wagner, A
    [J]. INVERSE PROBLEMS, 2004, 20 (05) : 1639 - 1647
  • [4] Bifurcations of FitzHugh-Nagumo (FHN) System
    Ongay Larios, Fernando
    Agueero Granados, Maximo Augusto
    [J]. CIENCIA ERGO-SUM, 2010, 17 (03) : 295 - 306
  • [5] The stabilization of coupled FitzHugh-Nagumo system
    Yu, Xin
    Wang, Renzhi
    [J]. 2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 875 - 877
  • [6] Local bifurcation for the FitzHugh-Nagumo system
    Rocsoreanu, C
    Sterpu, M
    [J]. ANALYSIS AND OPTIMIZATION OF DIFFERENTIAL SYSTEMS, 2003, 121 : 345 - 356
  • [7] Analysis of the stochastic FitzHugh-Nagumo system
    Bonaccorsi, Stefano
    Mastrogiacomo, Elisa
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (03) : 427 - 446
  • [8] SPIRAL BREAKUP IN A MODIFIED FITZHUGH-NAGUMO MODEL
    PANFILOV, A
    HOGEWEG, P
    [J]. PHYSICS LETTERS A, 1993, 176 (05) : 295 - 299
  • [9] Phase propagations in a coupled oscillator-excitor system of FitzHugh-Nagumo models
    Zhou Lu-Qun
    Ouyang Qi
    [J]. CHINESE PHYSICS LETTERS, 2006, 23 (07) : 1709 - 1712
  • [10] Existence of the solitary wave solutions supported by the modified FitzHugh-Nagumo system
    Gawlik, Aleksandra
    Vladimirov, Vsevolod
    Skurativskyi, Sergii
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (03): : 482 - 501