Hyperspectral subspace identification

被引:1008
|
作者
Bioucas-Dias, Jose M. [1 ,2 ]
Nascimento, Jose M. P. [1 ,3 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Elect & Comp Engn, P-1049001 Lisbon, Portugal
[3] Polytech Inst Lisbon, Inst Super Engn Lisboa, Dept Elect Telecommun & Comp Engn, P-1959007 Lisbon, Portugal
来源
关键词
dimensionality reduction; hyperspectral imagery; hyperspectral signal subspace identification by minimum error (HySime); hyperspectral unmixing; linear mixture; minimum mean square error (mse); subspace identification;
D O I
10.1109/TGRS.2008.918089
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
引用
收藏
页码:2435 / 2445
页数:11
相关论文
共 50 条
  • [1] Hyperspectral Subspace Identification Using SURE
    Rasti, Behnood
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2481 - 2485
  • [2] Noise estimation for hyperspectral subspace identification on FPGAs
    Germán León
    Carlos González
    Rafael Mayo
    Daniel Mozos
    Enrique S. Quintana-Ortí
    The Journal of Supercomputing, 2019, 75 : 1323 - 1335
  • [3] Noise estimation for hyperspectral subspace identification on FPGAs
    Leon, German
    Gonzalez, Carlos
    Mayo, Rafael
    Mozos, Daniel
    Quintana-Orti, Enrique S.
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (03): : 1323 - 1335
  • [4] Signal subspace identification in hyperspectral linear mixtures
    Nascimento, JMP
    Dias, JMB
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2005, 3523 : 207 - 214
  • [5] Fast and Reliable Noise Estimation for Hyperspectral Subspace Identification
    Benner, Peter
    Novakovic, Vedran
    Plaza, Antonio
    Quintana-Orti, Enrique S.
    Remon, Alfredo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (06) : 1199 - 1203
  • [6] Hyperspectral Signal Subspace Identification in the Presence of Rare Signal Components
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (04): : 1940 - 1954
  • [7] ALGORITHMS FOR ROBUST SIGNAL SUBSPACE IDENTIFICATION IN HYPERSPECTRAL IMAGES: A COMPARATIVE ANALYSIS
    Acito, N.
    Corsini, G.
    Diani, M.
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 50 - +
  • [8] Signal Subspace Identification for Incomplete Hyperspectral Image With Applications to Various Inverse Problems
    Lin, Chia-Hsiang
    Young, Si-Sheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [9] Hyperspectral signal subspace estimation
    Nascimento, Jose M. P.
    Bioucas-Dias, Jose M.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3225 - +
  • [10] Hyperspectral Signal Subspace Identification in the Presence of Rare Vectors and Signal-Dependent Noise
    Acito, N.
    Diani, M.
    Corsini, G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01): : 283 - 299