Hyperspectral subspace identification

被引:1008
|
作者
Bioucas-Dias, Jose M. [1 ,2 ]
Nascimento, Jose M. P. [1 ,3 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Elect & Comp Engn, P-1049001 Lisbon, Portugal
[3] Polytech Inst Lisbon, Inst Super Engn Lisboa, Dept Elect Telecommun & Comp Engn, P-1959007 Lisbon, Portugal
来源
关键词
dimensionality reduction; hyperspectral imagery; hyperspectral signal subspace identification by minimum error (HySime); hyperspectral unmixing; linear mixture; minimum mean square error (mse); subspace identification;
D O I
10.1109/TGRS.2008.918089
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
引用
收藏
页码:2435 / 2445
页数:11
相关论文
共 50 条
  • [31] Improvement of subspace identification
    Ma, Yan
    Zeng, Qing-Fu
    Li, Zhi-Shun
    Tuijin Jishu/Journal of Propulsion Technology, 2001, 22 (04): : 319 - 321
  • [32] Spectral-spatial Classification of Hyperspectral Images Using Signal Subspace Identification and Edge-preserving Filter
    Alborzi, Negin
    Poorahangaryan, Fereshteh
    Beheshti, Homayoun
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2020, 17 (02) : 222 - 232
  • [33] Spectral-spatial Classification of Hyperspectral Images Using Signal Subspace Identification and Edge-preserving Filter
    Negin Alborzi
    Fereshteh Poorahangaryan
    Homayoun Beheshti
    International Journal of Automation and Computing, 2020, 17 : 222 - 232
  • [34] Spectral-spatial Classification of Hyperspectral Images Using Signal Subspace Identification and Edge-preserving Filter
    Negin Alborzi
    Fereshteh Poorahangaryan
    Homayoun Beheshti
    International Journal of Automation and Computing, 2020, 17 (02) : 222 - 232
  • [35] Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images
    Li, Xianlu
    Nadisic, Nicolas
    Huang, Shaoguang
    Pizurica, Aleksandra
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 2022 - 2026
  • [36] Optimizing Subspace SVM Ensemble for Hyperspectral Imagery Classification
    Chen, Yushi
    Zhao, Xing
    Lin, Zhouhan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (04) : 1295 - 1305
  • [37] Regularizing Subspace Representation for Fusing Hyperspectral and Multispectral Images
    Yang, Yanhong
    Wang, Congcong
    Feng, Yuan
    Zhang, Jianhua
    Zheng, Yuhui
    Chen, Shengyong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (12273-12286) : 12273 - 12286
  • [38] Matched shrunken subspace detectors for hyperspectral target detection
    Wang, Ziyu
    Xue, Jing-Hao
    NEUROCOMPUTING, 2018, 272 : 226 - 236
  • [39] Subspace Clustering Constrained Sparse NMF for Hyperspectral Unmixing
    Lu, Xiaoqiang
    Dong, Le
    Yuan, Yuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3007 - 3019
  • [40] Tensorial Multiview Subspace Clustering for Polarimetric Hyperspectral Images
    Chen, Zhengyi
    Zhang, Chunmin
    Mu, Tingkui
    He, Yifan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60