Hyperspectral subspace identification

被引:1008
|
作者
Bioucas-Dias, Jose M. [1 ,2 ]
Nascimento, Jose M. P. [1 ,3 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Elect & Comp Engn, P-1049001 Lisbon, Portugal
[3] Polytech Inst Lisbon, Inst Super Engn Lisboa, Dept Elect Telecommun & Comp Engn, P-1959007 Lisbon, Portugal
来源
关键词
dimensionality reduction; hyperspectral imagery; hyperspectral signal subspace identification by minimum error (HySime); hyperspectral unmixing; linear mixture; minimum mean square error (mse); subspace identification;
D O I
10.1109/TGRS.2008.918089
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
引用
收藏
页码:2435 / 2445
页数:11
相关论文
共 50 条
  • [41] Adaptive matched subspace detectors for hyperspectral imaging applications
    Manolakis, D
    Siracusa, C
    Shaw, G
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3153 - 3156
  • [42] Kernel adaptive subspace detector for hyperspectral target detection
    Kwon, H
    Nasrabadi, NM
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 681 - 684
  • [43] A Structural Subspace Clustering Approach for Hyperspectral Band Selection
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Unmixing hyperspectral data by using signal subspace sampling
    Spiegelberg, Jakob
    Muto, Shunsuke
    Ohtsuka, Masahiro
    Pelckmans, Kristiaan
    Rusz, Jan
    ULTRAMICROSCOPY, 2017, 182 : 205 - 211
  • [45] A Hyperspectral Subspace Target Detection Method Based on AMUSE
    Hou, Yani
    Zhu, Wenzhong
    Wang, Erli
    Zhang, Ying
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (12)
  • [46] SUBSPACE SELECTION FOR HYPERSPECTRAL PANSHARPENING USING SPARSE UNMIXING
    Ge Chiru
    Li Yunsong
    Li Jiaojiao
    Wang Keyan
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7232 - 7235
  • [47] Robust joint nearest subspace for hyperspectral image classification
    Bo, Chunjuan
    Lu, Huchuan
    Wang, Dong
    REMOTE SENSING LETTERS, 2016, 7 (10) : 915 - 924
  • [48] Subspace Matching Pursuit for Sparse Unmixing of Hyperspectral Data
    Shi, Zhenwei
    Tang, Wei
    Duren, Zhana
    Jiang, Zhiguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (06): : 3256 - 3274
  • [49] Seeded Laplacian in Sparse Subspace for Hyperspectral Image Classification
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Qiu, Hao
    Zeng, Xiangyan
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIV, 2018, 10644
  • [50] Kernel orthogonal subspace projection for hyperspectral signal classification
    Kwon, H
    Nasrabadi, NM
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (12): : 2952 - 2962