Hyperspectral subspace identification

被引:1008
|
作者
Bioucas-Dias, Jose M. [1 ,2 ]
Nascimento, Jose M. P. [1 ,3 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Elect & Comp Engn, P-1049001 Lisbon, Portugal
[3] Polytech Inst Lisbon, Inst Super Engn Lisboa, Dept Elect Telecommun & Comp Engn, P-1959007 Lisbon, Portugal
来源
关键词
dimensionality reduction; hyperspectral imagery; hyperspectral signal subspace identification by minimum error (HySime); hyperspectral unmixing; linear mixture; minimum mean square error (mse); subspace identification;
D O I
10.1109/TGRS.2008.918089
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
引用
收藏
页码:2435 / 2445
页数:11
相关论文
共 50 条
  • [21] Maximized subspace model for hyperspectral anomaly detection
    Edisanter Lo
    Pattern Analysis and Applications, 2012, 15 : 225 - 235
  • [22] Hyperspectral Unmixing via Latent Multiheterogeneous Subspace
    Li, Chunzhi
    Gu, Yonggen
    Chen, Xiaohua
    Zhang, Yuan
    Ruan, Lijian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 563 - 577
  • [23] Variable subspace model for hyperspectral anomaly detection
    Edisanter Lo
    Pattern Analysis and Applications, 2013, 16 : 393 - 405
  • [24] Variable subspace model for hyperspectral anomaly detection
    Lo, Edisanter
    PATTERN ANALYSIS AND APPLICATIONS, 2013, 16 (03) : 393 - 405
  • [25] Sparse Subspace Target Detection for Hyperspectral Imagery
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [26] A subspace band selection method for hyperspectral imagery
    Zhao L.
    Wang L.
    Liu D.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (05): : 904 - 910
  • [27] Maximized subspace model for hyperspectral anomaly detection
    Lo, Edisanter
    PATTERN ANALYSIS AND APPLICATIONS, 2012, 15 (03) : 225 - 235
  • [28] Hyperspectral anomaly detection within the signal subspace
    Ranney, Kenneth I.
    Soumekh, Mehrdad
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (03) : 312 - 316
  • [29] Kernel adaptive subspace detector for hyperspectral imagery
    Kwon, H
    Nasrabadi, NM
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (02) : 271 - 275
  • [30] An overview of subspace identification
    Qin, S. Joe
    COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (10-12) : 1502 - 1513